
05: Assembly and 
the stack



Review
⬢ Sensors and actuators (I/O devices) can be 

analog or digital
⬢ MCUs can read from/write to I/O devices

⬡ GPIO pins (for digital signals and PWM)
⬡ DACs, ADCs (for analog signals)
⬡ This enables us to use software to interact 

with the physical world

2



MCUs are varied
But knowing the theory of how a CPU, 
peripherals, memory work gives context to 
reading a data sheet

3



How software you write becomes 
code running on an MCU
Code you write

Assembly Code

Machine code

4

Compiler

Assembler



How a microprocessor executes 
machine code
Fetch - fetch next instruction from memory

Decode - decode instruction 

Execute - perform computation

ALU (arithmetic logic unit): add, subtract, 
negate, bit operations

Shift: used in multiplication/division

Memory access - read or write registers
5



Program

6



Assembly

Memory address of instruction

Instruction in machine code (hex)

Assembly instructions

7



Resources used in this 
presentation
ARM Cortex M0+ devices generic user guide

ARMv6-M Architecture reference manual

8

https://documentation-service.arm.com/static/5f04abc8dbdee951c1cdc9f7?token=
https://documentation-service.arm.com/static/5f8feef5f86e16515cdbf7e4?token=


Registers

9

⬢ Small pieces of fast memory
⬢ Usually 8-, 16-, 32- or 64-bits
⬢ Many purposes on CPUs and MCUs:

⬡ Storing temporary data for execution
⬡ Addressing memory
⬡ Configuring peripherals (Lab 3)



10



11



Stack
LIFO (last-in, first-out) data structure

Keeps track of information for execution:

Local variables

Return pointers

Grows “downward”

Stack Pointer (SP) points to latest value

Direction of 
growth

Higher memory addresses

Lower memory addresses

SP→

12



Cortex M0+ stack operations
push reglist - push the registers in reglist onto the stack 
(highest value registers pushed first), decrements stack 
pointer

pop reglist - pop the values on the stack into the registers 
in reglist (lowest value registers popped first)

if SP is in reglist, branch to where SP is pointing after pop

13



Loads and stores
An instruction like ldr r1 [r2, #8] means:

⬢ Add 8 to the value in register r2
⬢ Interpret the result as a memory address
⬢ Take the value stored at that memory address 

and put it in r1

(Similar with str, which is for storing values in 
registers at memory addresses) 

14



previous stack
LR

R0

R1

R2

R3

R4

R5

R6

R7

15



Passing parameters?
Multiple conventions

⬢ Pass on stack
⬢ Pass as registers
⬢ Combination (In gcc: first four arguments 

passed in registers, then stack)

What does the code that we looked at do?

16



“
Why learn about assembly 

when compilers exist?

17



Why

18



Machine code mystery

Decode an instruction like b510

19



How a microprocessor executes 
machine code
Fetch - fetch next instruction from memory

Decode - decode instruction 

Execute - perform computation

ALU (arithmetic logic unit): add, subtract, 
negate, bit operations

Shift: used in multiplication/division

Memory access - read or write registers
20



Pipelining

vs

images: 
Flaticon.com

21



Pipeline hazards (dependencies)

22Lee/Seshia 2017



Cortex-M0+

23Image source

https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex-M0%20plus%20Processor%20Datasheet.pdf

