Assembly and

the stack
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‘ Review

Sensors and actuators (I/0 devices) can be

analog or digital

MCUs can read from/write to I/O devices
GPIO pins (for digital signals and PWM)
DACs, ADCs (for analog signals)
This enables us to use software to interact
with the physical world



‘ MCUs are varied

But knowing the theory of how a CPU,
peripherals, memory work gives context to
reading a data sheet



How software you write becomes

code running on an MCU
Code you write

%Compiler

Assembly Code

Nssembler

Machine code




How a microprocessor executes

machine code
Fetch - fetch next instruction from memory

Decode - decode instruction
Execute - perform computation

ALU (arithmetic logic unit): add, subtract,
negate, bit operations

Shift: used in multiplication/division

Memory access - read or write registers



int N =:12:
int fibo = 0;

void setup() {
int £ prev = 1;
ing:f =413

int i = 0;

while (i < N) {
int £ next = £ + £ _prev;

f prev = £;
f = £ next;
i+=1;

}

fibo = £;

veid loop() {
Serial.println(fibo);
delay (100);



( Y4 N\
000020fc 4petup>:
20fc: 4b07 1dr r3, [pc, #22] ; (21ic <setup+0x20>)
20fe b510 push tred, Ir}
2100: 681c 1dr r4, [r3, #0]
2102: 2301 novs r3, #1
2104: 2200 movs r2, #0
2106: 0019 movs rl, '3
2108: 4294 cmp r4, r2
2i0a: ble.n 2116 <setup+Oxla>
210c: adds rh; 1, T3
2i0e: adds r2, #1
2110: movs rd, T3
vz & A0 movs r3, r0
2114 b.n 2108 <setup+0xc>
2116: 1dr r2, [pc, #2] ; (2120 <setup+0x24>)
2118: str r3, [xr2, #0]
21ila: pop {r4, pc}
23X .word
2120: .word

00002124 <
2124
2126: 20] ; (213c <loop+0x18>)
2128: movs r2, #10
212a: 3 1dr rl, [r3, #0]
2326 4804 1dr xr0, [pc, #1¢€] ; (2140 <loop+0xic>)
21i2e: £002 f8dé¢ bl 42de < ZN7arduinoSPrint7printlnEii>
2132: 2064 movs r0, #100 ; 0Ox64
2134 £000 f8c2 bl 22bc <delay>
2138: bdl10 pop {r4, pc}
21i3a: ) nop ; (mov r8, r8)
ZT3Ac: .word 0x20
2140 .word 0x200001
. J \_ J




Resources used in this

presentation
ARM Cortex MO+ devices generic user guide

ARMv6-M Architecture reference manual



https://documentation-service.arm.com/static/5f04abc8dbdee951c1cdc9f7?token=
https://documentation-service.arm.com/static/5f8feef5f86e16515cdbf7e4?token=

‘ Registers

Small pieces of fast memory

Usually 8-, 16-, 32- or 64-bits

Many purposes on CPUs and MCUs:
Storing temporary data for execution
Addressing memory
Configuring peripherals (Lab 3)



The processor core registers are:

RO

R1

R2

R3

Low registers <

R4

R5

R6

R7

R8

R9

High registers <

R10

R11

R12

> General purpose registers

Banked stack pointers
s

(

) -
Active Stack Pointer

SP(R13) —» | PSP | | MSP

Link Register

LR (R14)

Program Counter

PC (R15)

PSR

PRIMASK

CONTROL

Program Status Register
Interrupt mask register Special registers
Control Register
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A2.3.1

ARM core registers

There are thirteen general-purpose 32-bit registers, RO-R12, and an additional three 32-bit registers that
have special names and usage models:

SP

LR

P

Stack Pointer, used a pointer to the active stack. For usage restrictions see Use of 0b1101 as
a register specifier on page AS5-83. This is preset to the top of the Main stack on reset. See
The SP registers on page B1-211 for more information. SP is sometimes referred to as R13.

Link Register stores the Return Link. This is a value that relates to the return address from
a subroutine that is entered using a Branch with Link instruction. The LR register is also
updated on exception entry, see Exception entry behavior on page B1-224. LR is sometimes
referred to as R14.

Note

LR can be used for other purposes when it is not required to support a return from a
subroutine.

Program Counter, see Use of 0b1111 as a register specifier on page AS5-82 for more
information. The PC is loaded with the Reset handler start address on reset. PC is sometimes
referred to as R15.
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‘ StaCk Lower memory addresses
LIFO (last-in, first-out) data structure
Keeps track of information for executiom AN

- SP
|_.ocal variables

Direction of
growth

Return pointers

Grows “downward”

Stack Pointer (SP) points to latest value

Higher memory addresses
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‘ Cortex MO+ stack operations

push reglist - push the reqisters in reglist onto the stack
(highest value registers pushed first), decrements stack
pointer

pop reglist - pop the values on the stack into the registers
in reglist (lowest value reqisters popped first)

if SP is in reglist, branch to where SP is pointing after pop
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‘ Loads and stores

An instruction like 1dr rl [r2, #8] means:

Add 8 to the value in register r2
Interpret the result as a memory address

Take the value stored at that memory address
and put itinr1

(Similar with st r, which is for storing values in
registers at memory addresses)
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2124 <loop>:
. b510

1dr r3, [pc, #28 ; (21ic <setup+0x20>)

push {r4, Ir}
1dr r4, [r3, #0]
movs r3, #1
novs r2, #C
movs rl, T3

cmp r4, xr2

ble.n 2116 <setup+Oxla>
adds r0, 1, 3

adds r2, #1

movs 1, T3

movs r3, x0

b.n 2108 <setup+0Oxc>

1dr r2, [pc, #21] ; (2120 <setup+0x24>)
str r3, [r2, #0]

pop {r4,

.word .

.word

push trd,; 1r}

1dr r3, [pc, #20] : (213c <loop+0x18>)
movs r2, #10

1dr rl, [xr3, #0]

1dr xr0, [pc, #1¢] ; (2140 <loop+0xic>)
bl <42de < _ZN7arduinoSPrint7printlnEii>
movs r0, #100 ; 0Ox64

bl 22bc <delay>

pop {r4, pc}

nop ; (mov r8, r8)

RO

R1

R2

R3

R4

R5

R6

R7

LR
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‘ Passing parameters?

Multiple conventions

e Passon stack

e Pass as reqgisters

e Combination (In gcc: first four arguments
passed in registers, then stack)

What does the code that we looked at do?
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0

Why learn about assembly
when compilers exist?






‘ Machine code mystery
ore: ps20 [

Decode an instruction like b510
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How a microprocessor executes

machine code
Fetch - fetch next instruction from memory

Decode - decode instruction
Execute - perform computation

ALU (arithmetic logic unit): add, subtract,
negate, bit operations

Shift: used in multiplication/division

Memory access - read or write registers
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‘ Pipeline hazards (dependencies)

Lee/Seshia 2017

control hazard (conditional branch)

gl branch
= taken
< E
S >
8 s 6
= © £
o = g
° s
—|pC g g«
% £ IS
= &
"""""""""" data hazard (memory read or ALU result)
fetch decode execute memory writeback

Figure 8.2: Simple pipeline (after Patterson and Hennessy (1996)).
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Cortex-MO+

Cortex-MO+ Pipeline

1* Stage - Fetch 2" Stage - Decode and
and Pre-decode Simple Execute (DX)

Fetch and

Pre-decode

Image source

Instruction
Queue

Main decoder,
- data address
generation

Read/write ports

23


https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex-M0%20plus%20Processor%20Datasheet.pdf

