Assembly and

the stack

05

‘ Review

Sensors and actuators (I/0 devices) can be

analog or digital

MCUs can read from/write to I/O devices
GPIO pins (for digital signals and PWM)
DACs, ADCs (for analog signals)
This enables us to use software to interact
with the physical world

‘ MCUs are varied

But knowing the theory of how a CPU,
peripherals, memory work gives context to
reading a data sheet

How software you write becomes

code running on an MCU
Code you write

%Compiler

Assembly Code

Nssembler

Machine code

How a microprocessor executes

machine code
Fetch - fetch next instruction from memory

Decode - decode instruction
Execute - perform computation

ALU (arithmetic logic unit): add, subtract,
negate, bit operations

Shift: used in multiplication/division

Memory access - read or write registers

int N =:12:
int fibo = 0;

void setup() {
int £ prev = 1;
ing:f =413

int i = 0;

while (i < N) {
int £ next = £ + £ _prev;

f prev = £;
f = £ next;
i+=1;

}

fibo = £;

veid loop() {
Serial.println(fibo);
delay (100);

(Y4 N\
000020fc 4petup>:
20fc: 4b07 1dr r3, [pc, #22] ; (21ic <setup+0x20>)
20fe b510 push tred, Ir}
2100: 681c 1dr r4, [r3, #0]
2102: 2301 novs r3, #1
2104: 2200 movs r2, #0
2106: 0019 movs rl, '3
2108: 4294 cmp r4, r2
2i0a: ble.n 2116 <setup+Oxla>
210c: adds rh; 1, T3
2i0e: adds r2, #1
2110: movs rd, T3
vz & A0 movs r3, r0
2114 b.n 2108 <setup+0xc>
2116: 1dr r2, [pc, #2] ; (2120 <setup+0x24>)
2118: str r3, [xr2, #0]
21ila: pop {r4, pc}
23X .word
2120: .word

00002124 <
2124
2126: 20] ; (213c <loop+0x18>)
2128: movs r2, #10
212a: 3 1dr rl, [r3, #0]
2326 4804 1dr xr0, [pc, #1¢€] ; (2140 <loop+0xic>)
21i2e: £002 f8dé¢ bl 42de < ZN7arduinoSPrint7printlnEii>
2132: 2064 movs r0, #100 ; 0Ox64
2134 £000 f8c2 bl 22bc <delay>
2138: bdl10 pop {r4, pc}
21i3a:) nop ; (mov r8, r8)
ZT3Ac: .word 0x20
2140 .word 0x200001
. J _ J

Resources used in this

presentation
ARM Cortex MO+ devices generic user guide

ARMv6-M Architecture reference manual

https://documentation-service.arm.com/static/5f04abc8dbdee951c1cdc9f7?token=
https://documentation-service.arm.com/static/5f8feef5f86e16515cdbf7e4?token=

‘ Registers

Small pieces of fast memory

Usually 8-, 16-, 32- or 64-bits

Many purposes on CPUs and MCUs:
Storing temporary data for execution
Addressing memory
Configuring peripherals (Lab 3)

The processor core registers are:

RO

R1

R2

R3

Low registers <

R4

R5

R6

R7

R8

R9

High registers <

R10

R11

R12

> General purpose registers

Banked stack pointers
s

(

) -
Active Stack Pointer

SP(R13) —» | PSP | | MSP

Link Register

LR (R14)

Program Counter

PC (R15)

PSR

PRIMASK

CONTROL

Program Status Register
Interrupt mask register Special registers
Control Register

10

A2.3.1

ARM core registers

There are thirteen general-purpose 32-bit registers, RO-R12, and an additional three 32-bit registers that
have special names and usage models:

SP

LR

P

Stack Pointer, used a pointer to the active stack. For usage restrictions see Use of 0b1101 as
a register specifier on page AS5-83. This is preset to the top of the Main stack on reset. See
The SP registers on page B1-211 for more information. SP is sometimes referred to as R13.

Link Register stores the Return Link. This is a value that relates to the return address from
a subroutine that is entered using a Branch with Link instruction. The LR register is also
updated on exception entry, see Exception entry behavior on page B1-224. LR is sometimes
referred to as R14.

Note

LR can be used for other purposes when it is not required to support a return from a
subroutine.

Program Counter, see Use of 0b1111 as a register specifier on page AS5-82 for more
information. The PC is loaded with the Reset handler start address on reset. PC is sometimes
referred to as R15.

1

‘ StaCk Lower memory addresses
LIFO (last-in, first-out) data structure
Keeps track of information for executiom AN

- SP
|_.ocal variables

Direction of
growth

Return pointers

Grows “downward”

Stack Pointer (SP) points to latest value

Higher memory addresses

12

‘ Cortex MO+ stack operations

push reglist - push the reqisters in reglist onto the stack
(highest value registers pushed first), decrements stack
pointer

pop reglist - pop the values on the stack into the registers
in reglist (lowest value reqisters popped first)

if SP is in reglist, branch to where SP is pointing after pop

13

‘ Loads and stores

An instruction like 1dr rl [r2, #8] means:

Add 8 to the value in register r2
Interpret the result as a memory address

Take the value stored at that memory address
and put itinr1

(Similar with st r, which is for storing values in
registers at memory addresses)

14

2124 <loop>:
. b510

1dr r3, [pc, #28 ; (21ic <setup+0x20>)

push {r4, Ir}
1dr r4, [r3, #0]
movs r3, #1
novs r2, #C
movs rl, T3

cmp r4, xr2

ble.n 2116 <setup+Oxla>
adds r0, 1, 3

adds r2, #1

movs 1, T3

movs r3, x0

b.n 2108 <setup+0Oxc>

1dr r2, [pc, #21] ; (2120 <setup+0x24>)
str r3, [r2, #0]

pop {r4,

.word .

.word

push trd,; 1r}

1dr r3, [pc, #20] : (213c <loop+0x18>)
movs r2, #10

1dr rl, [xr3, #0]

1dr xr0, [pc, #1¢] ; (2140 <loop+0xic>)
bl <42de < _ZN7arduinoSPrint7printlnEii>
movs r0, #100 ; 0Ox64

bl 22bc <delay>

pop {r4, pc}

nop ; (mov r8, r8)

RO

R1

R2

R3

R4

R5

R6

R7

LR

15

‘ Passing parameters?

Multiple conventions

e Passon stack

e Pass as reqgisters

e Combination (In gcc: first four arguments
passed in registers, then stack)

What does the code that we looked at do?

16

0

Why learn about assembly
when compilers exist?

‘ Machine code mystery
ore: ps20 [

Decode an instruction like b510

19

How a microprocessor executes

machine code
Fetch - fetch next instruction from memory

Decode - decode instruction
Execute - perform computation

ALU (arithmetic logic unit): add, subtract,
negate, bit operations

Shift: used in multiplication/division

Memory access - read or write registers

20

‘ Pipeline hazards (dependencies)

Lee/Seshia 2017

control hazard (conditional branch)

gl branch
= taken
< E
S >
8 s 6
= © £
o = g
° s
—|pC g g«
% £ IS
= &
"""""""""" data hazard (memory read or ALU result)
fetch decode execute memory writeback

Figure 8.2: Simple pipeline (after Patterson and Hennessy (1996)).

22

Cortex-MO+

Cortex-MO+ Pipeline

1* Stage - Fetch 2" Stage - Decode and
and Pre-decode Simple Execute (DX)

Fetch and

Pre-decode

Image source

Instruction
Queue

Main decoder,
- data address
generation

Read/write ports

23

https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex-M0%20plus%20Processor%20Datasheet.pdf

