
05: Interrupts

Analog to Digital Converter
Analog signal gets discretized to some number

Done via an Analog to Digital Converter (ADC)

MCUs have ADC built in
Different implementations - idea is to compare to
reference voltages

Why it matters to embedded software
developers: cost, timing, precision

Find this in the data sheet!
From the SAMD 21 family datasheet

2

What about outputs?
Digital to analog converter - pin produces
voltage from 0 to VCC

Pulse Width Modulation - simulates analog
output

3

Digital to Analog Converter (DAC)
Divide voltage based on digital number

Actuator driven by DAC has similar quantization
error to ADC

Some MCUs don’t have DACs

Expensive

Fewer applications

Unlike ADC, cannot share
Image source 4

http://www.cmm.gov.mo/eng/exhibition/secondfloor/MoreInfo/ADConverter.html

Pulse Width Modulation (PWM)
Rapidly switch digital pin on and off

Creates perception of analog output

Increasing/decreasing duty cycle
increases/decreases perception of power
output level

Many microcontrollers provide PWM
peripherals

Image source 5

https://en.wikipedia.org/wiki/Pulse-width_modulation

Digital Signal Processing (DSP)
ADC/DAC/PWM combined with computational power
of an MCU has enabled the explosion of digital
applications

⬢ Audio, video, robotics, medical…

MCU lets you take in an analog signal, do
computations on it, and produce a new analog signal

DSP is a cool area but (mostly) beyond the scope of
this course 6

These things are not perfect
Quantization, non-linearity, error in components
all contribute to imprecision

DSP can help alleviate some sources of error

Design and models that take sources of error
into account are vital for some applications

7

Example of very simple DSP:
debouncing

What do we do here?
Image source

8

https://www.geeksforgeeks.org/switch-debounce-in-digital-circuits/

“
How did we read inputs from
sensors in the first lab? What

are the upsides and
downsides to this method?

9

Sensors

10

Polling vs interrupts
Polling: reading input periodically, keep track of
changes

Interrupt: be alerted when input changes/does
something we are watching for
Real life examples: push notification vs checking texting
app, rice cooker alerting you vs manually checking
doneness, pet begging for food instead of you checking
their bowl...

11"Alarm Clock 2" by Alan Cleaver is licensed under CC BY 2.0

https://www.flickr.com/photos/11121568@N06/4293345629
https://www.flickr.com/photos/11121568@N06
https://creativecommons.org/licenses/by/2.0/?ref=ccsearch&atype=rich

Types of interrupts
Software interrupts - function is called or some
bits are set in a specific memory location to tell the
software to go to an interrupt service routine (ISR)
Hardware interrupts - external trigger (voltage
change on pin) tells software to go to an ISR

Exceptions - internal trigger (like writing to a
protected memory location) triggers a fault

12

Interrupt process
1. Program executing normally
2. Interrupt triggered
3. Processor saves program state
4. Processor enters ISR
5. Processor restores program state
6. Program resumes executing

13

Main function

ISR

Code in memory

PC

Stack

SP

14

Main function

ISR

Code in memory

PC

Stack

SP

Interrupt
happens

15

Main function

ISR

Code in memory

PC

Stack

SP

Old PC

Program state
(local variables,
etc)*

*architecture/MCU-dependent. Sometimes it is up to the
programmer to save specific state such as registers

16

Main function

ISR

Code in memory

PC

Stack

SP

Old PC

Program state
(local variables, etc)

Interrupt type 1: code memory location 1
Interrupt type 2: code memory location 2
….

Interrupt vector table

17

Main function

ISR

Code in memory Stack

SP

Old PC

Program state
(local variables, etc)

Interrupt type 1: code memory location 1
Interrupt type 2: code memory location 2
….

Interrupt vector table

PC

18

Main function

ISR

Code in memory Stack

SP

Old PC

Program state
(local variables, etc)

PC

19

Main function

ISR

Code in memory Stack

SPOld PC

PC

20

Main function

ISR

Code in memory Stack

SP

PC

21

What if multiple interrupts happen?
Often interrupts are prioritized

Higher priority interrupt is allowed to interrupt
lower priority interrupt

Ties broken by position in vector interrupt table

Programmer configures this when setting up
code

22

Implementing ISRs
Often only one handler for some type of
interrupt

Example on SAMD21 (your Arduino MCU): external
interrupts share one ISR

Why?

Check flags that are set by MCU to see which
pin/peripheral triggered the interrupt -- you will
see this in lab 3

23

“
What is the difference

between an interrupt and a
subroutine call?

24

Subroutine call: you know exactly when in the code you
call it

Interrupt: can happen at any point, even “inside” of a
command

Even x = x + 1 is made up of multiple machine instructions (load x
from memory, increment x, write value back to memory)

Atomic instructions: values being read/changed in atomic
instruction cannot be read/changed by anyone else 25

Interrupts can happen at any time

Homework problem 10.7

26

char flag = 0;
volatile char* display;
volatile short sensor1, sensor2;

void ISR() {
 if (flag) {
 sensor1 = readSensor1();
 } else {
 sensor2 = readSensor2();
 }
}

int main() {
 // ... set up interrupts ...
 // ... enable interrupts ...
 while(1) {
 if (flag) {
 if isFaulty2(sensor2) {
 display = "Sensor2 Faulty";
 }
 } else {
 if isFaulty1(sensor1) {
 display = "Sensor1 Faulty";
 }
 }
 flag = !flag;
 }
}

(a) Is it possible for the ISR to update the value of sensor1 while the main
function is checking whether sensor1 is faulty? Why or why not?

(b) Suppose a spurious error occurs that causes sensor1 or sensor2 to be
a faulty value for one measurement. Is it possible for that this code
would not report “Sensor1 faulty” or “Sensor2 faulty”?

(d) Suppose that instead being interrupt driven, ISR and main are
executed concurrently, each in its own thread. Assume a microkernel
that can interrupt any thread at any time and switch contexts to execute
another thread. In this scenario, is it possible for the ISR to update the
value of sensor1 while the main function is checking whether sensor1 is
faulty? Why or why not?

Why do we care?
Interrupts are powerful and used widely in
embedded programming

Understanding how interrupts affect program
state/variables aids in design and debugging

Interrupts complicate modeling and timing
analysis of a system (more on this later)

27

