02: Introduction to Circuits

Group project

No exams for this class \rightarrow convince me you **met the learning goals** via the project

Demo & project report, revisions after feedback

Open-ended (with suggestions)

Must include concepts from class

More details after shopping period

Capstone

- Built on to final project
 - Some sort of related, additional
 - functionality that you can do on your own
- After your group writes the project proposal:
 - You write up your proposal
 - We meet to chat about it
 - You do the work and write it up

Review

Embedded systems are everywhere, have specific purposes, and unique challenges

Microcontrollers (MCUs) have CPU, I/O, memory on one chip

In lab you began working with an MCU and embedded hardware

Why would we as software engineers care about circuits, analog components, how I/O works, etc?

Ideas

On a computer, OS abstracts hardware, but on embedded devices, we don't get that luxury protocols latency debouncing

Helps to know what's happening when debugging

Design circuits with regards to power, current, etc. limits

This is the extent of circuit math we will use in the course!

Prelabs and labs will always guide you through what you need to know

Electrical circuit

- Loop through which electricity flows
- Consists of at least a power source and conductors
- Some quantities that are useful to measure:
 - Voltage
 - Current
 - Power

Difference in electric potential

Measured between two points (or one point and implicit ground)

We say we measure voltage **across** a component

Current

Rate of flow of charged particles through a circuit

Convention in circuits: imagine particles flowing from positive to negative terminal (or from a power source to ground)

We say we measure current **through** a component

Current through resistor

Parallel and series components

Series

Parallel

Current is the same through both components Voltage: ???

Voltage is the same across both components Current: ???

Kirchoff's laws

Sum of **voltages** around a closed loop is zero

Sum of **currents** flowing *into* a node is the same as sum of currents flowing *out* of the node

-Vin + V1 + V2 = 0Vin = V1 + V2

| = |1 + |2

Ohm's law & power law

Ohm's law: **V** = **IR** (SI units: volts, amperes, ohms) Power law: **P** = **IV** (SI units: watts, amperes, volts) Useful for:

Computing values needed to build circuit

Figuring out the limits of what you can attach to your microcontroller

Writing down accurate math for modeling your system

Thevenin equivalent circuit

Any linear electrical network containing current sources, voltage sources, and resistors can be replaced by an equivalent circuit with one voltage source and one resistor

Thevenin for resistors in series

V = IR

Vin = V1 + V2

Vin

Thevenin for resistors in parallel

V = IR

Voltage is the same across both components

| = |1 + |2

Given Ohm's law (V = IR) and the Power law (P = IV), what is the maximum power output of your Arduino pin (rated at 3.3 V, 7 mA)