
Verification and 
invariants



Final project demo
Friday the 3rd!

Looking to find a bigger room, stay tuned

Walk-around demo (no formal presentation)

Produce a flyer or slide outlining the goals of the product 
(user-facing or product requirements)

Q & A by course staff (convince us you did what you said you 
would)
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Final project report
Due date options?

Instructions + syllabus posted by this weekend

Initial feedback + time for revisions before final assessment

Individual component (+ possible meeting during reading 
period)

Capstone folks required to meet during reading period
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“
What are some limitations of 

software testing?
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Safety properties and invariants
Invariant: some computable property of a system 
that always holds (more precise definition later)

Safety property (or safety requirement): assertion 
that nothing bad ever happens 
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“
How are invariants and safety 

properties related?
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Define “bad thing” computably

Invariant: bad thing is not true

Example for AC from lab 8
1) There is no more than 290 ms of delay between status_message messages.
→ “bad thing”: two consecutive status_message messages come more than 
290 ms apart
→ invariant: bad thing is not true
→ your monitor checked if the invariant always held

Safety properties can be 
expressed as invariants
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Another example from lab 8
10) If the system is on, the control knob hasn’t changed for at 
least 2450 ms, and the current temperature has been lower 
than the desired temperature for at least 2450 ms, the AC 
status is off as sent by status_message.

What is the “bad thing?”
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Working with invariants
⬢ Runtime monitoring on a deployed system
⬢ Testing
⬢ ...formally proving?
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Runtime monitoring on a 
deployed system

Normal/safe 
operation

Failure detected/failsafe
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Monitor to detect this
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Invariants for testing
Our basic understanding of testing so far 
has been largely transactional:

Give input, observe that output matches 
what is expected

Are embedded systems transactional?
Robot asked to navigate to a goal point

Image source
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https://navigation.ros.org/getting_started/index.html


Formalizing invariants
...back to FSMs!

Board discussion:

Traces

Defining states for an ESM

Reachability
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Propositional logic
Composed of terms (“a”, “b”, “c”), where a term can be:
p(x), q(x), r(x,y): propositions (evaluate to either true or false)

x > 0
x + y = 2
robot x has not hit obstacle y

a ^ b : a and b (true if term a is true and term b is true)

a v b: a or b (true if term a is true or term b is true or both)

-a: not a (true if term a is false)

a => b: a implies b (true if term b is true or if term a is false)
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Formal definition of an invariant
A property p of a transition system* S is an 
invariant of S if every reachable state of S 
satisfies p

*For our class, think of a transition system as an FSM

[Alur, chapter 3]
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Inductive invariants
A property p of a transition system S is an 
inductive invariant of S if:

1. The initial state s satisfies p, and
2. If a state s satisfies p, and (s, t) is a transition, 

then the state t also satisfies p
(Board discussion)
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Proving non-inductive invariants
To establish that a property p is an invariant of 
the transition system S, find a property q that:

1. q is an inductive invariant of S, and
2. the property q implies the property p (that is, 

a state satisfying q is guaranteed to satisfy p)

(Board discussion)
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Non-inductive invariants
Prove B => x > 0 ^ y > 0 inductively?

Cannot do this

Need to bring along the previous property we 
proved, which will imply this one
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How would you deal with this 
invariant?

10) If the system is on, the control knob hasn’t changed for at 
least 2450 ms, and the current temperature has been lower 
than the desired temperature for at least 2450 ms, the AC 
status is off as sent by status_message.
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Stateful invariants
For a transition system S, Create a safety monitor FSM  called M 
where:
⬢ inputs of M are a subset of the inputs and outputs of system 
⬢ Some subset E of the states of M are designated as “error” states
⬢ The behavior of M is designed such that if the sequence of inputs to M 

leads M to an error state in E, this is an invariant violation

Compose M and S. The invariant becomes that any state in E is not 
reachable
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“
What similarities do you see 
between the safety monitor 

FSM definition and the 
runtime monitor you wrote in 

lab 8?
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Open and closed systems
To automate invariant verification, we need to 
work with a closed system

[Lee/Seshia, chapter 15] 24



Automated verification of invariants
Create a closed system by composing model of 
the system with model of the environment

[Lee/Seshia, chapter 15] 25



Simplified closed AC model
Observe use of 
non-determinism to 
represent that 
button can be 
pressed at any time
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Automated reachability analysis
A property p of a transition system* S is an invariant of S if 
every reachable state of S satisfies p

How would you automatically determine the set of reachable 
states?

Assume a system of finite states

(Verification for a system of infinite states is undecidable)
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Depth-first search

[Lee/Seshia, chapter 15] 28



DFS board example for AC
(timer variable needs to be limited to 
avoid infinite traversal down path)
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“
How would you modify the 

DFS algorithm to either 
produce a “YES” or a 
counterexample for a 

property p?
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Reference for DFS question
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Safety requirements vs liveness 
requirements
Safety: nothing bad ever happens

Liveness: something good eventually happens

Means system is functioning as intended

System requirements are often liveness 
requirements
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“
Can you come up with a 

liveness requirement for the 
AC?
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“
How would you monitor that 

a liveness requirement is 
fulfilled?
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Saying something eventually happens is the 
same thing as saying that it is not the case that it 
always doesn’t happen

Can we use model checking to check this?
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Verifying some liveness properties



Assume you have some execution trace

LTL operators are propositional logic operators PLUS:

G (globally/always)

F (eventually/finally)

X (next state)

U (until)
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FG vs G, GF vs F, FG vs GF
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Homework problem discussion
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“
LTL means we can specify 
liveness properties with F. 

Can we specify safety 
properties more easily with 

LTL, too?
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Use globally to say it holds for every state

Can use “X” to express statefulness/history 
without a monitor state machine
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Safety properties with LTL



Limits of LTL
G(even(x) -> ((X-even(x)) ^ (XXeven(x))

But if you don’t know if you started a sequence 
with an odd number or even number, you cannot 
write

(even(x) ^ X-even(x))
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Repeatability
A property p over the state variables of a 
transition system S is said to be repeatable if 
there exists some trace q of S such that q 
satisfies the recurrence LTL-formula GFp.
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Buchi automata
Automata which “accept” a given LTL formula

(see Alur’s textbook for examples)
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Automated LTL verification 
Buchi automata construction can be automated 
(discussion in optional reading)

Compose Buchi automata of negated property 
with system and produce a counter-example of 
repeatability to prove property

Done using a DFS + cycle detection (“nested DFS”)
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More verification techniques
Automated verification

Symbolic model checking: represent a set of states symbolically 
as a logic formula and does symbolic (algebraic) computation

What about timed/hybrid automata?
Symbolic model checking for a different kind of logic (signal 
temporal logic)
Assisted proof engines (differential dynamic logic)
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“
Summary: pros/cons of 

verification?
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