
Safety, privacy, 
and security



Projects
⬢ Great work on milestone presentations!

⬡ I will try to read through the reports this weekend
⬢ Next steps

⬡ Address peer review feedback on FSM (copy spreadsheets, mark 
each item as “fixed” or “will not fix” with the reason)

⬡ Keep working towards final demo
⬡ Keep fleshing out and updating documentation
⬡ Soon: modeling and verification

2



Cautionary Tale Presentations

3



Safety-critical systems
Systems where failure of operation can cause serious harm 
or death

Direct contact with humans (cars, robots, medical devices)

Affect human well-being (power plants, HVAC systems)

Disclaimer: this lecture is a starting point for reasoning about 
safety-critical software. For true safety-critical development, apply a 
well-known standard as part of a safety-focused development culture

4



Safety plans and safety requirements
Safety is part of the lifecycle

If you are only evaluating safety at the testing stage, you are not 
engineering for safety

System is assumed unsafe unless engineered for safety

Safety is built-in, not added

Safety requirements are not an afterthought

“Working system” is not the same thing as a “safe” system
5



Safety envelope

Normal/safe 
operation

Failure detected/failsafe

Un
sa

fe
 o

pe
ra

tio
n

Un
sa

fe
 o

pe
ra

tio
n

Unsafe operation

Unsafe operation

Unsafe operation

Failure detected/failsafe

Functional/system requirements

Safety requirements

6



Safety V model (applies to security as well)
+ Hazard 
assessment

+ Safety 
requirements

+ Functional 
and technical 
safety concepts

+ Implementation of 
safety

+ Safety v & v

+ Safety case audit

+ Production safety 
management

7



Safety standards
Guide how to engineer for safety

How to assess risk
What SW processes to use
What code standards to follow
How much/what kinds of testing
How much formal verification

Different standards for different domains
Progression for automotive: MISRA -> IEC 61508 → 
ISO 26262 →SOTIF/ISO21448 (→UL 4600?)

8



Safety Integrity Levels
A (standards-based) target to attain for each safety function

Named SIL levels (IEC 61508/ISO 26262 has SIL-1, SIL-2, SIL-3, SIL-4)
SIL-4 means least acceptable failures (in ISO26262,  < 10-9 per hour)

Each SIL may require:
Maximum accepted risk of failure

Minimum accepted software quality

Minimum accepted redundancy architecture

All hardware to be certified at or above that level

Analysis and mitigation techniques

9



Different standards for different domains

Image source 10

https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level


Standards inform practice
ISO 26262

Image source
11

http://embeddedinembedded.blogspot.com/2017/11/iso-26262-part-67-software.html


Risk Matrices
A way of reasoning about the amount of risk of a hazardous event

IEC 61508 Consequence

Likelihood
(failures per year)

Catastrophic Critical Marginal Negligible

Multiple loss of life Single loss of life Major injuries Minor injuries at worst

Frequent > 10-3 I I I II

Probable 10-3 - 10-4 I I II III

Occasional 10-4-10-5 I II III III

Remote 10-5-10-6 II III III IV

Improbable 10-6-10-7 III III IV IV

Incredible < 10-7 III IV IV IVAcceptable

Tolerable (cost tradeoff)

Undesirable

Unacceptable

12



“
What different ways can you 

think of that an e-scooter 
(hardware/software) might 

fail?

13Image source

https://en.wikipedia.org/wiki/Spin_(company)


14



Hazop
Hazard and operability 
analysis

Break system into nodes

Examine wording of system 
requirements to reason 
about potential failures

Brake within 2s -> what 
happens if we brake after 
2s?

15

Reasoning about hazards/possible failures
FMEA
Failure mode and effects 
analysis

Worksheets to reason about 
potential failures

Causes, effects, 
probabilities, etc

Fault tree analysis
Use boolean logic to 
determine what low-level 
failures could cause an 
anticipated failure

Image source

https://en.wikipedia.org/wiki/Fault_tree_analysis


FTA for scooter

16



Escalation of safety

17

Avoid faults

Detect faults

Failover

Intervention



Escalation of safety

18

Avoid faults

Detect faults

Failover

Intervention



“
Pick a scooter software 

failure. How would you avoid 
it?

19



20



Code style
Style guides (MISRA C)

Spaghetti code

Special topics: global variables, floating point

21

https://rikkeisoft.github.io/sonar-rules/objc.html


Spaghetti Code
Code whose structure is impossible to untangle

MCC (McCabe’s cyclomatic complexity)
Measure of branching logic in code

Easy way to compute: #1 of closed loops + 1

Some standards impose limits on MCC

22Image source

https://en.wikipedia.org/wiki/Cyclomatic_complexity


Which would you rather test/maintain?

23Image source

http://www.mccabe.com/iq_developers.htm


“
Why would global variables 

be considered harmful?

24



“
Why would floating point be 

considered harmful?

25



“
What, besides coding, should 
be part of a safety-oriented 

project culture?

26



27



Escalation of safety

28

Avoid faults

Detect faults

Failover

Intervention



“
What are ways you can think 

of detecting one of the 
scooter faults?

29



30

Doer/checker models

Doer

Behaving within safety 
envelope/functional requirement

Checker

Emergency operation

Failover: switch to different 
component
Intervention: alert/switch to human 
operator
Shutoff: turn off system

Safety properties

You will see runtime 
monitoring in lab!

Checker must be higher SIL than doer
Must be confident detection/emergency 
operation won’t fail



Escalation of safety

31

Avoid faults

Detect faults

Failover

Intervention



Single points of failure
A single point of failure happens when a failure of one 
component renders the entire system unsafe

Avoid single points of failure by:

⬢ Software: doer/checker with failover
⬢ Hardware: failure detection with redundancy

Components must truly be separate for true redundancy
Hidden sources of correlation: shared libraries, shared power, 
shared connections, shared defective requirements…. 32



Redundancy

33

Entire system fails

System can still operate 
in reduced capacity



Redundancy math

34



Security
Safety is about system failing without an 
attacker model

Security is about system failing because of 
adversarial actions

35



Strategies for security
Do not connect devices to networks unless you need to

Use strong cryptography

Principle of least privilege
Each component only has access to as much of the system as it needs

Assume user wants to do the bare minimum (default passwords 
are dangerous)

36



37

https://cybernews.com/best-password-managers/most
-common-passwords/



It’s not just software….

38
Image source

https://boingboing.net/2009/07/04/wear-patterns-as-inf.html


Summary

39

Normal/safe 
operation

Failure detected/failsafe

Un
sa

fe
 o

pe
ra

tio
n

Un
sa

fe
 o

pe
ra

tio
n

Unsafe operation

Unsafe operation

Unsafe operation

Failure detected/failsafe
39

Avoid faults

Detect faults

Failover

Intervention


