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Multitasking

Scheduling

RTOS
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Imperative programs
(using book definition)

Computation is expressed as a sequence of 
operations

Each step changes the state of memory on the 
machine
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Threads
Individual imperative programs 
that run concurrently and share 
a memory space

On single-CPU systems, 
technically only one thread is 
executing at a given time, but 
multiple may be “active” 
(pending computation)

Memory (code, data, files)

Heap

Registers

Stack

Registers

Stack

Registers

Stack

Thread 1 Thread 2 Thread 3
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“
What example of thread-like 
behavior have we seen so far 

in this class?
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Interrupts as threads

Main function

ISR

Code in memory Stack

SP

Old PC

Program state 
(local variables, etc)

Interrupt type 1: code memory location 1
Interrupt type 2: code memory location 2
….

Interrupt vector table

PC

(From lecture 2)

Interrupt
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Interrupt’s view of execution

Main function

ISR

Code in memory Stack

SP

Old PC

Program state 
(local variables, etc)

PC

Interrupt
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Main process’ view of execution

Main function

ISR

Code in memory Stack

SP
Old PC

Program state 
(local 
variables, etc)

PC

Before interrupt

Main function

ISR

Code in memory Stack

SP
Old PC

Program state 
(local 
variables, etc)

PC

After interrupt
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“
What are the limitations of 

having interrupts as the only 
source of concurrency in 

embedded programming?
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Threading-like behavior without library/os/scheduler

“DIY concurrency”

Each task keeps track of the state it needs
void loop() {

  poll_inputs();

  task1();

  task2();

  task3();

} 10

Cyclic Execution



“
Pros/cons to cyclic 

execution?
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12

.



void loop() {

  poll_inputs();

  task1();

  task2();

  task3();

}

Worst-case time:

Tloop = Tpoll_inputs + Ttask1 + Ttask2 + Ttask3

(as long as worst-case time of tasks is known) 
13

Cyclic Execution timing analysis



Latency
Time that a task has to wait to start executing

Cyclic tasks - time between execution of task

Basically: main loop time

Interrupts - time between stimulus and ISR entry

Threads - time between arrival and start
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Multi-rate cyclic execution

void loop() {

  poll_inputs();

  task1();

  poll_inputs();

  task2();

  poll_inputs();

  task3();

}

Or even…
void loop() {

  poll_inputs();

  task1_step1();

  poll_inputs();

  task1_step2();

  poll_inputs();

  task2_step1();

  poll_inputs();

  task3_step1();

  …
}



Timing analysis + interrupts
void loop() {

  task1();

  task2();

  task3();

}

16

void input_isr() {

  ...

}

Assume Ttask1 + Ttask2 + Ttask3 = 200 ms
Assume interrupt takes 2 ms and happens at most every 20 ms
Worst case execution time of loop + interrupts = ?



Timing analysis + multiple interrupts
Loop time without interrupts = 200ms

Interrupt 1: 2ms, at most every 20ms

Interrupt 2: 1ms, at most every 10ms
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Compute the limit:
In 200 ms, 11x interrupt1, 21x interrupt2: 200 + 22 + 21 = 243ms
In 243 ms, 13x interrupt1, 25x interrupt2: 200 + 26 + 25 = 251ms
In 251 ms, 13x interrupt1, 26x interrupt2: 200 + 26 + 26 = 252ms
In 252 ms, 13x interrupt1, 26xinterrupt2: 200 + 26 + 26 = 252ms

← Highest possible latency of this 
interrupt?



More general multithreading
OS exposes an API for control

(...what OS?!)
Library (like pthreads in C) takes care of things
  pthread_create(&threads[i], NULL, perform_work, &thread_args[i]);

Scheduler schedules threads
We’ll talk scheduling strategies soon

More open to control/data pitfalls

For now: we are talking about single-processor systems
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Race condition - circular buffer
Race condition: order in which two threads access a 
resource affects outcome of the program

Recall from lab:
Check that a circular buffer is empty (assume we know it isn’t full): 
start_i == end_i

Check that a circular buffer is not about to be full:

(end_i + 1) % n != start_i
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n = 4 , start_i = 2, end_i = 1

main loop:
// if not empty, take from buffer

if(start_i != end_i) {

  Serial.println(buffer[start_i]);

  start_i = (start_i + 1) % n

}

interrupt:
// if still room, store in buffer

if((end_i + 1) % n != start_i) {

  buffer[end_i] = something;

  end_i = (end_i + 1) % n

}
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Mutual exclusion (mutex/lock)
Mechanism that can only be owned by one thread at 
a time

Commonly: blocks execution of thread until lock is acquired

Acquire lock before accessing shared resource, then 
release it

pthread_mutex_lock(&x_lock); // blocks until lock is free

//access x

pthread_mutex_unlock(&x_lock);
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Deadlock

pthread_mutex_lock(&lock1);

pthread_mutex_lock(&lock2);

// thread A task

pthread_mutex_unlock(&lock2);

pthread_mutex_unlock(&lock1);

pthread_mutex_lock(&lock2);

pthread_mutex_lock(&lock1);

// thread B task

pthread_mutex_unlock(&lock1);

pthread_mutex_unlock(&lock2);
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Memory consistency
w = 1;

x = y;

y = 1;

z = w;
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Depending on compiler optimization, 
“independent” operations may be 

rearranged within a thread!!

Can we guarantee that at least one of {x, z} will be 1 
by the time both threads finish executing?



Priority
Remember interrupt priorities?

Higher-priority interrupt can interrupt lower-priority interrupt but not 
the other way around

Task/thread priorities are the same idea
In preemptive system, higher-priority tasks can start executing 
before lower-priority tasks are done

Various configuration of # of supported priorities, dynamic vs 
static priorities, etc 
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Priority inversion

25

Mutex 
acquired

Higher priority task

Lower priority task

Needs 
mutex

Lower priority task 
(elevated)

Mutex 
released

Mutex 
acquired



Latency and priority
High priority interrupt: A (4 ms every 10 ms)

Lower priority interrupts: B (7 ms every 100ms), 
C (1ms every 15 ms)

Can C fail to execute within 15 ms?
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C arrives
A arrives



Questions on threading?
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Real-time systems
Correctness depends on the 
time an answer is delivered, 
not just the answer
float const_mult(float x, float y) {

   return x * y * C;

}
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(on your computer, it’s probably 
fine if this takes more time than 
anticipated)

float determine_speed(float rpm,

                      float radius) {

   return rpm * radius * CONVERSION_FACTOR;

}

…
void safety_critical_loop() {

   …
   if (determine_speed(rpm, r) >= SPEED_LIMIT) {

brake = ON;

   }

   …
}

Same function, different context



Scheduling
Decide when CPU runs what task so that deadlines are met

Soft: correctness “degrades” if deadlines aren’t met

vs

Hard: correctness fails if deadlines aren’t met

Dynamic: done at run-time

vs

Static: done at compile-time

Preemptive: task can interrupt lower-priority task

vs

Non-preemptive: tasks can’t interrupt each other
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Threads and scheduling
Instead of this
void loop() {

  task1();

  task2();

  task3();

}
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CPU schedules each task 
as its own thread

Execution time

Task 1 Task 2 Task 1 Task 3



One approach: cooperative multitasking
Thread is not interrupted unless it calls a 
procedure saying it’s done

Then other thread starts

Fairness concern - can lead to starvation of 
some threads
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“
How can we enforce fairness?
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Terminology

33
[Lee/Seshia chapter 12]

Also “arrival 
time”

For periodic tasks: release time = period 
offset from start of execution
Deadline = period pi (an assumption)



Criteria for comparing schedulers
Feasibility: feasible if fi ≤ di  for all i
Utilization: % of time CPU spends 
executing tasks (vs idle)

Maximum Lateness:
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Feasibility of scheduling periodic 
tasks

1) Sum of ei /pi  for all i is at most 1

Aka utilization <= 100%

Necessary but not Sufficient

2) Can you figure out a way to schedule all 
tasks during the LCM of all task periods? 
Then you can always schedule the tasks
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Types of schedulers
Static - figure it out ahead of time, CPU follows the set schedule

Dynamic:

Earliest deadline first (EDF)

Least laxity first (LLF) (laxity = di - ei)
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Exercise: statically schedule the 
following tasks
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Board exercise

Periodic scheduling

Utilization <=100% → are there cases where a scheduler 
does not achieve feasibility (non-preemptive vs preemptive 
EDF)



Rate Monotonic Scheduling (RMS)
Fixed-priority, determined ahead of time

Each task has its own priority

Task with smallest period = highest priority

Pre-emptive (higher priority tasks interrupt 
lower-priority tasks)

Guarantee of scheduling when utilization < 69.3%
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Real-Time Operating Systems
OS - manages system resources and provides 
services to programs/processes/threads

RTOS - an OS with real-time constraints

⬢ Scheduling policies
⬢ Often support for prioritization
⬢ Libraries for mutexes/semaphores
⬢ Memory management
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Application

Interfacing with hardware

Memory I/OCPU Peripherals

Electrical 
properties

Libraries

RTOS



“
Pros/cons to using an RTOS?
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.



“
Would you want to write your 

own RTOS?
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Expertise for being versed in RTOS use isn’t free
Usually when you buy software you also buy support

Patching in updates isn’t free

Industry use of open-source is tricky
License may require release of code
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“Free” RTOS considerations



45Image source

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
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https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
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Summary
Multitasking introduces complexity

Data/control dependencies

Scheduling

RTOS is a layer to manage scheduling


