Multitasking and
Real-Time
Systems

‘ Today

Multitasking
Scheduling
RTOS

‘ Imperative programs

(using book definition)

Computation is expressed as a sequence of
operations

Each step changes the state of memory on the
machine

Memory (code, data, files)
‘ Threads

Individual imperative programs
that run concurrently and share
a memory space

On single-CPU systems,
technically only one thread is
executing at a given time, but
multiple may be “active”
(pending computation)

0

What example of thread-like
behavior have we seen so far
in this class?

‘ Interrupts as threads

Code in memory

Stack

Program state
(local variables, etc)

Old PC

ISR

\

(From lecture 2)

Interrupt vector table

Interrupt type 1: code memory location 1
Interrupt type 2: code memory location 2

___——

‘ Interrupt’s view of execution

Code in memory Stack

SP

PC

ISR

‘ Main process’ view of execution

Before interrupt After interrupt
Code in memory Stack Code in memory Stack
E> Main function Program state E,‘> Main function Program state
(local (local
variables, etc) variables, etc)
Old PC Old PC

(sp

(sP

0

What are the limitations of
having interrupts as the only
source of concurrency in
embedded programming?

‘ Cyclic Execution

Threading-like behavior without library/os/scheduler

“DIY concurrency”

Each task keeps track of the state it needs

void loop() {
poll inputs();
taskl();
task2();
task3();

}

10

0

Pros/cons to cyclic
execution?

‘ Cyclic Execution timing analysis

void loop() {
poll inputs();
taskl();
task2();
task3();

}

Worst-case time:

T =T +1 T Ttaskz T TtasK3

loop poll_inputs taski

(as long as worst-case time of tasks is known)

13

‘ Latency

Time that a task has to wait to start executing

Cyclic tasks - time between execution of task
Basically: main loop time

Interrupts - time between stimulus and ISR entry

Threads - time between arrival and start

14

void loop() {

‘ Multi-rate cyclic execution

Or even..

void loop() {

poll inputs();
taskl();
poll inputs();
task2();
poll inputs();
task3();

poll inputs();
taskl stepl();
poll inputs();
taskl step2();
poll inputs();
task2 stepl();
poll inputs();
task3 stepl();

15

‘ Timing analysis + interrupts

void loop() { _p void input_isr() {
taskl(); =
task2(); \}
task3();

}

Assume Ttask1 + Ttaskz + Ttaskg =200 ms

Assume interrupt takes 2 ms and happens at most every 20 ms
Worst case execution time of loop + interrupts =7

16

‘ Timing analysis + multiple interrupts
Loop time without interrupts = 200ms

Interrupt 1: 2ms, at most every 20ms

Interrupt 2: Ims, at most every 10mMS « Highest possible latency of this

interrupt?

Compute the limit:

In 200 ms, 11X interruptl, 21x interrupt2: 200 + 22 + 21 =243ms
In 243 ms, 13x interruptl, 25x interrupt2: 200 + 26 + 25 = 251MS
In 251 ms, 13x interrupt, 26x interrupt2: 200 + 26 + 26 = 252mMSs
In 252 ms, 13x interruptl, 26xinterrupt2: 200 + 26 + 26 = 252ms

17

‘ More general multithreading

OS exposes an API for control
(.what OS?))

Library (like pthreads in C) takes care of things

pthread create(&threads[i], NULL, perform work, &thread args([il]);

Scheduler schedules threads
We'll talk scheduling strategies soon
More open to control/data pitfalls

For now: we are talking about single-processor systems

18

‘ Race condition - circular buffer

Race condition: order in which two threads access a
resource affects outcome of the program

Recall from lab:

Check that a circular buffer is empty (assume we know it isn't full):

start_1 == end_ i
Check that a circular buffer is not about to be full:

(end 1 + 1) % n != start 1

19

// if not empty, take from buffer

Nn=4,start_i=2,end_i=1

main loop:

if(start_i !'= end_i) {

}

Serial.println(buffer[start_i]);

start_1i

(start i + 1) % n

interrupt:

// if still room, store in buffer

if((end i + 1) % n != start_i) {
buffer[end i] = something;
end i = (end i+ 1) % n

}

20

‘ Mutual exclusion (mutex/lock)

Mechanism that can only be owned by one thread at
a time

Commonly: blocks execution of thread until lock is acquired

Acquire lock before accessing shared resource, then

release it
pthread_mutex_lock(&x_lock); // blocks until lock is free

//access X
pthread mutex unlock(&x _lock);

al

21

‘ Deadlock

(pthread mutex lock(&lock1); |
(pthread_mutex_lock(&lock2);]
// thread A task

pthread mutex unlock(&lock2);
pthread mutex unlock(&lockl);

(pthread mutex lock(&lock2); |
(pthread_mutex_lock(&lockl);]
// thread B task

pthread mutex_unlock(&lockl);
pthread_mutex _unlock(&lock2);

22

‘ Memory consistency
w = 1; y = 1;
X =Y; Z = W;

Can we guarantee that at least one of {x, z} will be 1
by the time both threads finish executing?

Depending on compiler optimization,
“independent” operations may be
rearranged within a thread!!

23

‘ Priority

Remember interrupt priorities?

Higher-priority interrupt can interrupt lower-priority interrupt but not
the other way around

Task/thread priorities are the same idea

In preemptive system, higher-priority tasks can start executing
before lower-priority tasks are done

Various configuration of # of supported priorities, dynamic vs
static priorities, etc

24

‘ Priority inversion

Higher priority task

Needs
mutex

25

‘ Latency and priority

High priority interrupt: A (4 ms every 10 ms)

Lower priority interrupts: B (7 ms every 100ms),

C (Ims every 15 ms)

Can C fail to execute within 15 ms?

0 1 2 3 4 5 6 7 8 9 10 |11 |12

13

14

15

C arrives .
A arrives

26

‘ Questions on threading?

27

‘ Real-time systems

Correctness depends on the
time an answer is delivered,
not just the answer

float const mult(float x, float y) {
return x * y * C;

}

(on your computer, it's probably
fine if this takes more time than
anticipated)

Same function, different context

float determine_speed(float rpm,
float radius) {
return rpm * radius * CONVERSION_FACTOR;

}

void safety critical loop() {

if (determine_speed(rpm, r) >= SPEED LIMIT) {

brake = ON;
}

28

‘ Scheduling

Decide when CPU runs what task so that deadlines are met

Soft: correctness “degrades” if deadlines aren't met
VS
Hard: correctness fails if deadlines arent met

Preemptive: task can interrupt lower-priority task

Dynamic: done at run-time VS

VS Non-preemptive: tasks can't interrupt each other

Static: done at compile-time
29

‘ Threads and scheduling

Instead of this CPU schedules each task

void loop() { as its own thread
task1();
task2(); (Teskt Tesk2 ek SN
task3 () 5 Execution time

¥

30

‘ One approach: cooperative multitasking

Thread is not interrupted unless it calls a
procedure saying it's done

Then other thread starts

Fairness concern - can lead to starvation of
some threads

31

0

How can we enforce fairness?

‘ Terminology

‘ response time o,

execution time | ¢;
— >+
task. Bl > (...!...)
execution | @
i 5 >
AA time
e fii d;
c | =
U ()
\E|E| £ 8| E| 2
5| B g— g- Dl B —
“qp | -
Also ar.nva’! z = g 3| 2 §
time % 7 5 9 &
hE

Figure 12.1: Summary of times associated with a task execution.

For periodic tasks: release time = period
offset from start of execution
Deadline = period p,(an assumption)

[Lee/Seshia chapter 12]

‘ Criteria for comparing schedulers

FeaSibiIity: feasible if f/._< d/. for all i ‘ response time o,)
oee . . execution time | ¢;
Utilization: % of time CPU spends B | el A
execution T
executing tasks (vs idle) i a4 >
r; Si f, d,'
Maximum Lateness: THEEIEREE
Sl € E| E|l 5|3

Feasibility of scheduling periodic

tasks
»Sumof e /p. for all jis at most 1

Aka utilization <= 100%

Necessary but not Sufficient

> Canyou figure out a way to schedule all
tasks during the LCM of all task periods?
Then you can always schedule the tasks

35

‘ Types of schedulers

Static - figure it out ahead of time, CPU follows the set schedule
Dynamic:

Earliest deadline first (EDF)

Least laxity first (LLF) (laxity =d. - e)

36

Exercise: statically schedule the
following tasks
Board exercise

Periodic scheduling

Utilization <=100% — are there cases where a scheduler

does not achieve feasibility (non-preemptive vs preemptive
EDF)

37

‘ Rate Monotonic Scheduling (RMS)

Fixed-priority, determined ahead of time
Each task has its own priority
Task with smallest period = highest priority

Pre-emptive (higher priority tasks interrupt
lower-priority tasks)

Guarantee of scheduling when utilization < 69.3%

p < n(2Y" - 1), (12.2)

38

‘ Real-Time Operating Systems

OS - manages system resources and provides
services to programs/processes/threads

RTOS - an OS with real-time constraints

e Scheduling policies

e Often support for prioritization

¢ Libraries for mutexes/semaphores
¢ Memory management

39

Application

RTOS

Interfacing with hardware

Electrical
properties

40

0

Pros/cons to using an RTOS?

0

Would you want to write your
own RTOS?

‘ “Free” RTOS considerations

Expertise for being versed in RTOS use isn't free
Usually when you buy software you also buy support

Patching in updates isn't free

Industry use of open-source is tricky

License may require release of code

44

Does your current embedded project use an C
operating system, RTOS, kernel, software
executive, or scheduler of any kind?

81% of those not using
OS/RTOSes, said the main

8l
o 72% 69% reason for NOT using is simply
70 65% 67% 68% that they are not needed.

60
50

40
30
20

35%
33% % 32%
28% 1%

10

Yes No

m2019 (N =613) 2017(N=818) m2015(N=1,125) w2014(N=1493) m2013(N=2,082)

Tim embedded 2019 Embedded Markets Study © 2019 Copyright by AspenCore. Al rights reserved.

Image source 45

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

57

Please select ALL of the operating systems G

you are currently using.

Embedded Linux
In-house/custom

FreeRTOS

Ubuntu

Android

Debian (Linux)

Microsoft (Windows 10)
Microsoft (Windows Embedded 7/Standard)
Texas Instruments RTOS
Wind River (VxWorks)

Green Hills (INTEGRITY)

Texas Instruments (DSP/BIOS)
Micrium (uC/0S-1)
AnalogDevices (VDK)

Keil (RTX)

Red Hat (IX Lunix)

Microsoft (Windows 7 Compact or earlier)
Express Logic (ThreadX)
Micrium (uC/0S-I)

QNX (QNX)

Android Go (Google)
Freescale MQX

Wittenstein High Integrity Systems...

CMX

Segger (embOS)
LynuxWorks (LynxOS)
Wind River (Linux)
OSEK

se: Currently using an operating system ECos

EE |ms EmbEddEd 2019 Embedded Markets Study © 2019 Copyright by AspenCore. All rights reserved

21%

Regional Breakout

4% EMEA uses Embedded Linux much more than other regions.
4% APAC uses Android much more than other regions and uses
4% Embedded Linux much less that others.

Embedded
i 21% 21% 30% 15%
Android)
(Google) 13% 9% 14% 27%
M 2019 (N = 468)
Only Operating Systems with

2% or more are shown.

Image source 46

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

‘ Summary

Multitasking introduces complexity
Data/control dependencies
Scheduling

RTOS is a layer to manage scheduling

47

