
Testing and
debugging

Schedule your capstone meetings!
There is a post on Ed

2

Today

3

What is testing

4

Inputs or workload

Oracle
(“ground
truth”)

Program

Match??

Types of testing in the V model
Product
requirements

Software
requirements

High
level/architecture
design

Low level/module
design Unit testing

Integration testing

(System-level)
Software testing

Acceptance
testing

5

Why not just system level testing?

6

Co
st

 o
f f

ix
in

g
de

fe
ct

Requirements→Design→Implementation→Unit test→Integration test→System test→Acceptance test→Production

Unit testing
Check correctness of a module

One unit test = test a single function/method/path
Cannot test even single function calls exhaustively - consider
f(int x, int y, int z)

Best place to test edge case values

Both structural and functional testing

7

Functional vs. structural testing
Functional

“Black box” testing

No underlying knowledge of code

Example goal: exercise every
requirement for module

Pros:

The requirements are what really
matters

Can’t be biased by knowing the
structure of code

Expensive to try to white box test
8

Structural

“White box” testing

Knowledge of structure of code -
guides testing

Example: exercise every line of code
in function call

Pros:

Possibly a higher chance of catching
bugs at edge cases

More guidance on what values to
use

“
What are the tradeoffs

between black box and white
box testing?

9

How to unit test an implementation
based on FSM?

10

1. LID_CLOSED 2. LID_OPEN

button_pressed = 2 / lid_angle := 90

button_pressed = 2 / lid_angle := 0

state update_fsm(state current_state, int button_pressed, …) {
 state next_state;
 switch(current_state) {
 case LID_CLOSED:
 if (button_pressed == 2) { // T 1-2
 set_lid_angle(90);
 next_state = LID_CLOSED;
 } else {
 next_state = current_state;
 }
 break;
 case LID_OPEN:
 ...
 break;
 default:
 error(“wrong state!”);
 }
 return next_state;
}

Want to test update_fsm’s implementation as-is
(without making changes to it)

Test for transition 1-2
end_state = update_fsm(LID_CLOSED,

2)

assert(end_state == LID_OPEN)

lid_angle == 90

11

1. LID_CLOSED 2. LID_OPEN

button_pressed = 2 / lid_angle := 90

button_pressed = 2 / lid_angle := 0

Mock out functions
// #define TESTING // uncomment to test

#ifndef TESTING // means TESTING is not defined

void set_lid_angle(int ang) { ...normal operation … }

#else

int test_lid_angle;

void set_lid_angle(int ang) { test_lid_angle = ang; }

#endif

12

Updated test of FSM transition 1-2
end_state = update_fsm(LID_CLOSED,

2)

assert(end_state == LID_OPEN);

assert(test_lid_angle == 90);

13

Is this structural or functional testing?

Edge case/unexpected inputs
What should this do?
update_fsm(LID_CLOSED, 4)

14

1. LID_CLOSED 2. LID_OPEN

button_pressed = 2 / lid_angle := 90

button_pressed = 2 / lid_angle := 0

What about this?
update_fsm(LID_CLOPEN, 1)

Break

15

Coverage
Notion of how completely a piece of code has been tested
with a particular set of tests, with respect to a specific metric

Examples:

⬢ What % of requirements have been tested?
⬢ What % of lines of code have been tested?

100% coverage does not mean 100% tested, but it’s a start
to assess testing thoroughness

16

White box testing guided by coverage
Branch (aka decision) - for every branch (e.g. if-statement), is
there at least one test case that evaluates that branch to true and
one that evaluates it to false?

Condition - like branch coverage, but looking at conditions
within branches (e.g. looking at x > 0 and y == 2 separately rather
than just x > 0 || y == 2)

Path - is there a test case that exercises every unique path
through the code (as opposed to considering each branch
independently) 17

Branch coverage
if (x == 3 && y < 0) {
 // do something;
} else {
 // do something else
}

q = x + z;

if (q < y) {
 if (x == z) {
 // do another thing
 }
}

18

x==3 && y < 0 X + z < y x == z

(3, -1, 3) true false n/a

(3, 4, 0) false true false

(2, 5, 2) false true true

Condition coverage
if (x == 3 && y < 0) {
 // do something;
} else {
 // do something else
}

q = x + z;

if (q < y) {
 if (x == z) {
 // do another thing
 }
}

19

x==3 y < 0 X + z < y x == z

(3, -1, 0) true true false n/a

(0, 1, 0) false n/a true true

(3, 4, 0) true false true false

Path coverage
if (x == 3 && y < 0) {
 // do something;
} else {
 // do something else
}

q = x + z;

if (q < y) {
 if (x == z) {
 // do another thing
 }
}

20

x == 3 && y < 0

q < y

q = x + z

something something
else

x == z

another
thing

start

end

Modified Condition/Decision
Coverage (MC/DC)
A more comprehensive coverage metric required by some
software safety standards

⬢ Each entry and exit point is invoked
⬢ Each decision takes every possible outcome <- branch

coverage
⬢ Each condition in a decision takes every possible outcome <-

condition coverage
⬢ Each condition in a decision is shown to independently

affect the outcome of the decision 21

Each condition in a decision is shown to independently affect
the outcome of the decision
Pick values to hold all but one condition constant. Does changing the other
condition affect the outcome of the decision?

(x + y) == 3 && (y < 0 || x == 2)

22

x y x + y == 3 y < 0 x == 2 decision

4 -1 true true false true

3 -1 false true false false

1 2 true false false false

2 1 true false true true

Unit testing summary

23

Cheaper to catch defects here than at any other stage of
testing

Perform structural (white-box) or functional (black-box) testing
on modules/components/functions

Assess completeness of testing with coverage

Rest of the V

24

Product
requirements

Software
requirements

High
level/architecture
design

Integration testing

(System-level)
Software testing

Acceptance
testing

Integration testing
Use high level design (architecture diagram and sequence
diagrams) to test interfaces between modules/components

Test every interface (message format, correctness of values)

Test timing and sequence of messages sent

Test that unexpected messages are handled

Assume modules are performing individual duties correctly
(why?) and just test the communication between them

25

Sequence diagram test example
Scenario: check available funds at ATM

26

User ATM Bank
server

insert card

request PIN

enter PIN validate PIN

PIN valid
display options

request available funds

get available funds

send available funds
display available funds

Integration test
sends these
messages

But also keeps
track of
sequence/timing
of these

Message formats
Messages are data structures with multiple fields

Example: message to validate pin may have fields
⬢ Message header (message #, timestamp, origin ID, etc)
⬢ Message type (“validate” encoded into bits)
⬢ (Encrypted) user ID
⬢ (Encrypted) PIN
⬢ Checksum

Part of integration testing is checking that message
formats are handled correctly

27

“
What are some coverage

criteria for integration tests?

28

Tests all system requirements
Tests entire system: do inputs at external interfaces
cause the correct overall behavior?

Software testing: tests from software POV

Acceptance testing: tests from customer POV

Expensive to instrument, very expensive to repair

Bug at system level is a process failure
29

System testing

Break

30

Other kinds of testing and tests
Smoke testing - turn the system on and see if the system works at
all (way to check if rest of the system is worth testing)
Exploratory testing - skilled tester exercises the system by hand
Beta test - product tested by a representative group of users
Regression test - did bug fix introduce new bugs?
Robustness test - does system hold up to invalid inputs?
Security test - can an attacker compromise the system?
Performance test - bandwidth, speed, data usage...

31

Testing plans
What should be tested?

What level(s) of testing? (unit, integration, system)

What kind(s) of testing for each level?

How should it be tested?

Define testing frameworks, mock functions

Make an argument for sufficient isolation from interference

How thoroughly should you test?

Define coverage goals
32

Accountability
Testing plan should be written before testing

Failing tests should be reported, with a plan to
triage/address them

Diagnosing and fixing failing tests is an art in itself (but good
methodology/defects caught at unit level/clean and intentional
testing helps!)

How do you know testing matches design at each level?

33

Traceability applies to tests too!
Example: trace unit test to FSM

Number each test - put each number in row of
traceability matrix

Put each transition (and non-transition!) in

columns of traceability matrix

Make sure each column has at least one x

34

1. LID_CLOSED 2. LID_OPEN

button_pressed = 2 / lid_angle := 90

button_pressed = 2 / lid_angle := 0

1-- 1-2 2-- 2-1

Test 1 x

Test 2 x

Test 3 x

What about this part of the chart?

35

Co
st

 o
f f

ix
in

g
de

fe
ct

Requirements→Design→Implementation→Unit test→Integration test→System test→Acceptance test→Production

Peer reviews
Structured meetings for people to review artifacts

Catch defects/discrepancies early

Can be done at every stage (requirements, design,
implementation, test plan)

Healthy projects find more than half of all defects
in peer review!

36

Fagan-style inspections
Participants have familiarity with project

Producer explains artifact but is not present for review

Roles assigned (reader, moderator, recorder)

Identify defect and move on

Give list of defects to producer and rework

37Image source

https://en.wikipedia.org/wiki/Fagan_inspection

Peer review best practices
Review the artifact, not the producer

Limit meeting length (<2 hours)

Have clear roles

Have set goals (checklist); agreed upon beforehand

Do not fix problems

Inspect early and often

38

Bonus: what about hardware debugging?

39Image source

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

Oscilloscopes
View graphs of electrical signals

40
Image source

https://fr.wikipedia.org/wiki/Fichier:Oscilloscope_sine_square.jpg

Hardware debuggers
Connect directly to pins of chip to
debug at the instruction level

41

Image source

https://brmlab.cz/project/arm_debugging/start

Logic analyzers
View graphs of digital
signals

Can sometimes do
advanced analysis and
timing comparison

42

Image source

http://dangerousprototypes.com/docs/Logic_Pirate

Summary
Testing should be done for every level of the V model;
should trace back to left side

Coverage helps set goals for how much to test

The earlier the testing, the cheaper (and peer reviews are
the cheapest of all!)

43

