
Lecture 3: 
Embedded 
Programming and 
Memory



A note about homeworks
Homeworks are graded on good-faith effort
Low-stakes way to introduce you to course 
material

You are not expected to know it already!

Set yourself a limit (time or emotional) and if you 
don’t have an answer, explain why

2



Variety of embedded 
architectures - discussion

3



MCUs are varied
But knowing the theory of how a CPU, 
peripherals, memory work gives context to 
reading a data sheet

4



How software you write becomes 
code running on an MCU
Code you write

Assembly Code

Machine code

5

Compiler

Assembler



Program

6



Assembly

Memory address of instruction

Instruction in machine code (hex)

Assembly instructions

7



Resources used in this 
presentation
ARM Cortex M0+ devices generic user guide

ARMv6-M Architecture reference manual

8

https://documentation-service.arm.com/static/5f04abc8dbdee951c1cdc9f7?token=
https://documentation-service.arm.com/static/5f8feef5f86e16515cdbf7e4?token=


9



10



Stack
LIFO (last-in, first-out) data structure

Keeps track of information for execution:

Local variables

Return pointers

Grows “downward”

Stack Pointer (SP) points to latest value

Direction of 
growth

Higher memory addresses

Lower memory addresses

SP→

11



Cortex M0+ stack operations
push reglist - push the registers in reglist onto the stack 
(highest value registers pushed first), decrements stack 
pointer

pop reglist - pop the values on the stack into the registers 
in reglist (lowest value registers popped first)

if SP is in reglist, branch to where SP is pointing after pop

12



previous stack

PC→ ←SP 

LR

R0

R1

R2

R2

R3

R4

R5

R6

R7

annotation

13



Passing parameters?
Multiple conventions

⬢ Pass on stack
⬢ Pass as registers
⬢ Combination (In gcc: first four arguments 

passed in registers, then stack)

What does the code that we looked at do?

14



“
Why learn about assembly 

when compilers exist?

15



Why

16



Break

17



Assembly to hex

Encode an instruction like b510

18



Stages of a microprocessor
Fetch - fetch next instruction from memory

Decode - decode instruction 

Execute - perform computation

ALU (arithmetic logic unit): add, subtract, 
negate, bit operations

Shift: used in multiplication/division

Memory access - read or write registers
19



Pipelining

vs

images: 
Flaticon.com

20



Pipeline hazards (dependencies)

21Lee/Seshia 2017



Cortex-M0+

22Image source

https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm%20Cortex-M0%20plus%20Processor%20Datasheet.pdf


Memory
Information stored in memory:

Code memory

Stack memory

Program data

Heap (dynamically allocated data)

Register file

23



Types of memory
Volatile - Gets erased when power gets turned 
off

RAM (DRAM, SRAM)

Non-volatile - Persists when power gets turned 
off

Flash

ROM (sometimes rewritable, like EEPROM)
24



Memory layout of SAMD 21 chip

25



Peripherals
Timers, ADCs, GPIO, etc

Controlled by special registers (different from CPU registers!)

“Memory-mapped”: from CPU perspective, just like writing to 
any other memory address

From MCU perspective, need a controller to send data to 
the right place

You will see this in lab!
26



Specifications
x-bit processor:

Data registers, data busses, words are that size

memory address may not be that size
Common for 8-bit CPUs to have 16-bit addresses (why?)

What are the implications for atomicity?

Harvard Architecture - code has separate memory space from data 
(common in MCUs)

vs. Von Neumann - shared memory space (SAMD21 is Von Neumann)
27



How information gets onto an MCU
Bootloader

Firmware on the board that can interface with the 
computer

Copies memory on upload

Hardware programmer
Special piece of hardware that connects to pins 
directly and transfers using a protocol

28



“
Why do we need to know 

about the type and layout of 
memory on an MCU?

29



30

Why



Break

31



Embedded programming
Reasons embedded programming differs from 
general-purpose computing:

⬢ Cannot assume portability
⬢ Parallelism from interrupts
⬢ Limited by hardware
⬢ Care more about scheduling/deadlines
⬢ Safety-critical applications

32



Portability
Word size

int will mean different things on an 8-bit CPU vs a 
32-bit CPU

Tip: be specific about size

int8, uint16, etc

What if you need to emulate a 16-bit int on a 8-bit CPU?

33

w x
y z

x + zw + y + carry bit

Fake it with multi-precision math! 



Keywords for sharing data
static

Value of local variable will persist between function calls

Useful in a function like loop() when you don’t want to declare a global 
variable

volatile
Means variable can change outside of main execution (e.g. by an ISR)

Tells compiler not to make certain optimizations

34



“
Floating point is often 

avoided in MCU applications. 
Why?

35



Why

36



Represent fractional values with implicit fixed divisor
Decimal example: if fixed divisor were 1000, we would represent 0.04 as 
“40” (e.g. counting by milliseconds instead of seconds)

In binary, we use powers of two as divisors

Write format as “x.y”, with x digits before decimal point mantissa and y 
after

37

Fixed point



Fixed point example
Interpret the bits “01010110” in different formats:

38

format regular/int 1.7 4.4 5.3

divisor n/a 2^7 = 128

Interpreted 
value

86



Fixed point math
Addition/subtraction work as usual

Let the CPU perform the computation and 
interpret the mantissa at the same spot

Mulitiplication: need to truncate

39

w x

y z

z * x

z * w

y * w

y * x

qr



Summary
⬢ Your code gets turned into assembly gets turned 

into machine code
⬢ Machine code is executed on the CPU
⬢ Data for programs is stored in different areas of 

memory
⬢ Because of these architectures, embedded 

programming has some unique considerations

40



Project
Teams of 4 (make posts on Ed)
Propose a project that:

Uses PWM, ADC, or DAC
Has at least one interrupt service routine
Has a watchdog timer (doesn’t count as your ISR)

Uses at least one of:
Serial communication
Wifi
Timer/counter

Final writeup will be required to have process and modeling & verification 
documentation
Send me your team/high-level idea by next Friday (Oct 1)
Proposal due two weeks from now (Oct 8)

41



Project ideas
⬢ Games

⬡ Electronic whack-a-mole
⬢ Music

⬡ Capacitive touch synthesizer
⬢ Controllers

⬡ Keyboard, game controller, etc prototype
⬢ Other

⬡ Plant moisture/light monitor
42


