CS155/254: Probabilistic Methods in
Computer Science

Chapter 13.1: Martingales

Probability and
Computing
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Hoeffding's Bound

Theorem

Let Xi,..., X, be independent random variables with E[X;| = p;
and Pr(B; < X; < Bj+¢;) =1, then

n n 22
IS o 2 9 <o T
i=1

i=1

Do we need independence?
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Martingales

A sequence of random variables 2y, Z1, ... is a martingale with
respect to the sequence Xg, X1, ... if for all n > 0 the following
hold:

® Z, is a function of Xp, X1,...., X;;

® E[|Z,|] < o0;

© E[Z,.1|X0, X1,..., X0] = Zn;

Definition
A sequence of random variables 7y, 73, ... is a martingale when it
is a martingale with respect to itself, that is

® E[|Z,]] < o0;

® E[Z, 1|20, 4,...,2,)] = Zp;
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Conditioning Defines a Probability Space
Let (2, Pr(-)) be a probability space, and let B C Q be an event in ©,

with Pr(B) > 0.

We show that (B, Pr(- | B)) is a probability space:

@ Forany £ C B,

0< Pr(E| B) =

Pr(E N B)

P S FrBIB)=1

@® Let £; and E; be disjoint events in B,

PI’(El U E1 | B)

PI’((El U EQ) n B)

Pr(B)
Pr(EsNB)  Pr(E;NB)
Pr(B) Pr(B)

Pr(E]_ | B)+Pf(E2 | B)
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Conditional Expectation

E[Y|Z=2z]=) yP(Y=y|Z=2),

where the summation is over all y in the range of Y.

Note that E[Y | Z] is a random variable (a function of Z)

Lemma

For any random variables X and Y/,

E[X] = Ey[Ex[X | Y]] =) Pr(Y =y)EX | Y =y],

where the sum is over all values in the range of Y.
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Lemma

For any random variables X and Y/,

E[X] = Ey[Ex[X | Y]] =) Pr(Y =y)E[X | Y =y],
y
where the sum is over all values in the range of Y.

ZPrY:y)E[X|Y:)/]
_ Zpry yZXPr =x|Y=y)
= ZZXPr =x|Y=y)Pr(Y=y)
_ ZZxPr =xNY=y)= ZxPr x) = E[X].

Ol
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Martingales

A sequence of random variables 2y, Z1, ... is a martingale with
respect to the sequence Xg, X1, ... if for all n > 0 the following
hold:

® Z, is a function of Xp, X1,...., X;;

® E[|Z,|] < o0;

© E[Z,.1|X0, X1,..., X0] = Zn;

Definition
A sequence of random variables 7y, 73, ... is a martingale when it
is a martingale with respect to itself, that is

® E[|Z,]] < o0;

® E[Z, 1|20, 4,...,2,)] = Zp;
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How to read it

E[Z,11|X0, X1, ..., Xs] = Z, is a short form for:

E[Z,11| X0 = x0, X1 = X1, .., X = Xq]
= Zn|[X0 = X0, X1 = x1,..., Xy :X]n = Zn

Since conditioning on [Xp = xp, X1 = x1,..., X, = x|, Z, is a
constant.

In many applications we just use E[Z,11|Z,] = Z, which stands for
E[Zn+1)Zn = 2] = zn-
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Example: Sequence of Fair Games

® X; = amount won/lost in i-th game. E[|.X;|] < oc.
e Fair game: E[Xj| = 0.

® 7, = total winnings at end of /-th game.

Lemma

71,2, ... is martingale with respect to X1, Xo, . ..

E[|Zi]] < >2;—1 E[IXj]] < oo, and
E[Zi11|X1, X2, ..., Xi] = Zi + E[Xi11] = Z;. O

The outcomes of the games do not need to be independent.
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Efficient Market Hypothesis

The efficient markets hypothesis (EMH) maintains that market
prices fully reflect all available information. Samuelson (1965),
Fama (1963);

For simplicity assume an asset that is paying no dividend, and
assume 0 interest rate (so value is not discounted in time).

Let X; be the price of a unit asset at time t.

If | know that at time t + 1 the price will be X; 1
sale the asset now for less than c.

If | know that at time t + 1 the price will be X;11 = ¢, | will not
buy the asset now for more than c.

¢, | will not

Xt — E[Xt+]_ ‘ XO7.. Xt]

Xo, X1,...,X¢, is a martingale.
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Gambling Strategies
You play series of fair games. (If you bet (pay) /, with probability
1/2 you win 2/, else 0.)
Game 1: you bet $1.
Game / > 1: you bet 2/ if yoy won in round i — 1; bet i otherwise.
X; = amount won/lost in ith game.
Z; = total winnings at end of ith game.
Assume that (before starting to play) you decide to quit after

exactly k games.
What is E[Z;]?
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Lemma

Let Zy, 21,25 ... be a martingale with respect to Xy, X1,....
For any fixed n,

EX[O:n] [Zn] - EXo [ZO] :

(X[O : I] :Xo,...7X,')

Proof.
Since Z; is a martingale Ex.[Zi| X0, X1, ..., Xi—1] = Zi_1.
Then

Exo:i—1j[Zi-1] = Ex[o:i—1[Ex;[Zi| X0, X1, - - -, Xi—1]] = Exqo0.11[Zi]

Thus,
EX[O:n] [Z"] - EX[O:nfl] [Zn_l] = coog= E[ZO]
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Gambling Strategies

You play series of fair games. (If you bet (pay) /, with probability
1/2 you win 2/, else 0.)

Assume that before you start playing:

® You decide to stop after exactly k games.

You decide to stop after each game with probability 1/2.

You decide to stop after k-th loss.

You decide to stop before the k-th loss.

You decide to stop when you win $1000.

What is E[Z;] in each case?
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Stopping Time

Definition

A non-negative, integer random variable T is a stopping time for
the sequence Zy, 71, ... if the event “T = n" depends only on the
value of random variables 7y, 71, ..., Z,,.

Intuition: corresponds to a strategy for determining when to stop a
sequence based only on values seen so far.

In the gambling game:
® first time | win 10 games in a row: is a stopping time;

® the last time | win: is not a stopping time.
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Martingale Optional Stopping Theorem

Theorem

If Zy, Z1, ... is a martingale with respect to X1, Xo,... and if T is
a stopping time for X1, Xo, ... then

E[Z7] = E[Z]

whenever one of the following holds:
@ there is a constant c such that, for all i, |Z;| < c;
® T is bounded;

©® E[T] < oo, and there is a constant c such that
EUZ,'+]_ = Z,‘HX;[, 506 ,X,'] < cC.
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Proof of Martingale Stopping Theorem (Sketch)

Define a sequence Yp, Y1,... such that

v _ | Z T
Tl zr fT<i

Lemma

The sequence Yy, Y1, ... is a martingale with respect to

@ VY, is determined by Z,. .., Z,.

@ E[|Ya]] < maxo<i<n E[|Xi[] < 301, E[IXi|] < 00

© E[Voi1|20, 21, ..., Z0) = Yo+ Ezy [(Yors — Yo)lirom|Zo, 21, ., Ze) =
Y, + Ez sl [(Zn+1 = Zn)‘Zo, Zl, ey Z,,]Pr(T > n) = V2

n

Since Pr(T > n) is independent of Z,.1, and E[(Z,41 — Z,)] = 0.
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Since Y0, Yi,... is a martingale, for any n > 0, E[Y,] = E[Z],
and

lim E[Y,] = E[Yo] = E[Z].

n—o0

Since T is finite, Z7 = limp—s00 Znin(n, 7) = liMn—s00 Yn.
We want to show that E[Z7] = lim,_,o E[Y,] = E[Z0].

This is not always true:
Example: Let Wi, Wh, ... be random variables with distributions:

W, — n with pr'obabllltyn
0 otherwise

lim W, =0,

n—o0

but
lim E[W,] =1.
n—o0
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Since Yp, Yi,... is a martingale, for any n > 0, E[Y,,| = E[Z],
and
Ii_)m E[Y.] = E[Yo] = E[Z).

Since T is finite, Z7 = limy 00 Znin(n, 7) = liMn—00 Y.
We want to show that E[Z7] = lim,_,o E[Y,] = E[Z0].

We use a simple version of the Dominated Convergence Theorem:

Theorem

Let Wy, Wh, ... be a sequence of random variables such that
limp—0o W, = W (pointwise), and max;|W;| < M, where M is
either a constant or a random variable with E[|M|] < oo, then

lim E[W,] = E[W].
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Proof of Martingale Stopping Theorem (Sketch)

Since T is finite, limpo0c Yn = limp—s00 Zmin(n, 1) = ZT-
We need to show that | Y, < M.
@ there is a constant ¢ such that, for all /,
‘Yn| < maxog,-g,,\Z,-\ <c,c=M< 0.
9 T is bounded - |Yn’ S maxog,-gmaXT]Z,-| S M < oo
® E[T] < oo, and there is a constant ¢ such that
EUZ,'+]_ — ZiHXl; .. .,X,‘] <c

Zi| <c-

Y= 20+ Z(Zi+1 —Zi)li<t < |2| + Z |Zis1 — Zillict = M.
i=1 =1
EIM|] = E[Z[1+ D E[E[|Zi1 — Z|X, ..., X] LicT]

i=1

< E[Zll + ci Pr(T > i)

E[|Z]|] + cE[T] < o0

IN
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Martingale Stopping Theorem Applications

We play a sequence of fair games with:
® T is bounded, E[Z7] = E[Z].
® E[T] < oo and E[|Xj|] < oo, E[Z7] = E[Z)].
©® Double the bet until the first win. E[T] = 2 but
EUZIH — Z,-HXl, - ,X,-] is unbounded.
@ T is the first time we made $1000: E[T] is unbounded.
@ Stop before the first loss. Not a stopping time.
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Example: The Gambler's Ruin

Consider a sequence of independent, fair 2-player gambling
games.
In each round, each player wins or loses $1 with probability %
X; = amount won by player 1 on ith round.

® |f player 1 has lost in round i: X; < 0.
Z; = total amount won by player 1 after ith rounds.

* 7,=0.
Game ends when one player runs out of money

Player 1 must stop when she loses net ¢; dollars (Z; = —¢1)
Player 2 terminates when she loses net ¢, dollars (Z; = ().

q = probability game ends with player 1 winning /> dollars.
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Example: The Gambler's Ruin

e T = first time player 1 wins ¢, dollars or loses /1 dollars.
® T is a stopping time for Xy, Xo,....

® /y,Z1,... is a martingale.
® 7's are bounded.

¢ Martingale Stopping Theorem: E[Z7] = E[Zy] = 0.
E[ZT] = qf2 — (1 — q)€1 =0

U+l

q
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Example: A Ballot Theorem

e (Candidate A and candidate B run for an election.

® Candidate A gets a votes.
® Candidate B gets b votes.

® 3> b

® \/otes are counted in random order:

® chosen from all permutations on n = a + b votes.

® What is the probability that A is always ahead in the count?
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Example: A Ballot Theorem

® S; = number of votes A is leading by after / votes counted
® If Ais trailing: S; < 0.
e S —=a—b.

Sn—k
n—k*

e For0< k<n-—1: X, =

® Consider Xy = zfg,Xl, vy X1,
® This sequence goes backward in time!

E[Xk+1]Xo0, X1,..., Xk] =7
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Example: A Ballot Theorem

E[Xk+1|X0~, le s 7Xk] =7

This sequence goes backward in time! Equivalent to starting with
all the votes counted, and removing at each step a random vote
from the count.

Snfkfl
E[Xky1|Xo, X1,..., Xia] = E [n—k—l Sny ey Sn_(k-1)]
Sn—k Sn—k -1 Sn—k Sn—k
(n—k)n—k—1+( B n—k)n—k—l
 Spk(n—k—1)
 (n—k—=1)(n—k)
= Xk-1
= Xo, X1,...,X, is a martingale.
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Example: A Ballot Theorem
E[Xk|Xo, X1, ..., Xk_1] = ?

e Conditioning on Xy, X1, ..., Xx_1: equivalent to conditioning
on Sn, Sn_l, vy Snf(kfl)l
® S, =ap_k— b,_), = the number of votes for A minus the

number of votes for B after the first n — k votes are counted.

® (n— (k —1))-th vote: random vote among the first n — k + 1
votes.

s Sn—(k—1) + 1 if the (n — k + 1)-th vote is for B
nk Sn—(k—1) — 1 if the (n — k 4 1)-th vote is for A

: — k41—,
Sn—(k—1) 1 with prob. W

Sn—k = .
" { Snf(k—l) — 1 with prob. :n:((kk:i)) 26/30




n—k+1-— dn—(k—1)
(n—k+1)
an—(k—1)
(n—k+1)
n—k
Sn—(k-1) 7 (k1) k—1)

E[Sh—kSn—(k-1)] = (Sp—(k—1) +1)

+ (Sn—(k-1) — 1)

(Since 2a,_(k—1) = n— k+1=a,_(k_1) = bp—(k—1) = Sn—(k-1))
(Since
n—k+1-2a, (k_1)— = bp_(k—1) — an—(k—1) = —Sn—(k-1))

Sn—
E[Xk|Xo, X1,...,Xk_1] = E [n_’;( Snye s Sn(kn)]
Sn—(k-1)
n—(k—1)
= Xk-1
= Xo, X1,...,X, is a martingale.
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Example: A Ballot Theorem

T_ { min{k < n—1: X, =0} ifsuch k exists

n—1 otherwise
® T is a stopping time.
® T is bounded.

e Martingale Stopping Theorem:

E[S)] a—-b
n  a+b’

E[X7] = E[Xo] =

Two cases:
@ A leads throughout the count.
® A does not lead throughout the count.
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@ A leads throughout the count.
For0<k<n-—1:5,_, >0, then X, > 0.

T=n-—1.
X1 = Xp_1 = 51.
A gets the first vote in the count: S; = 1, then X+ = 1.

[Xn—1 = S1 cannot be 0. If it's —1, then there must be k < n—1
such that X, = 0.]

® A does not lead throughout the count.
For some k: S, = 0. Then X, = 0.

T=k<n-—1.

Xt =0.
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Example: A Ballot Theorem

Putting all together:
@ A leads throughout the count: X1 = 1.
® A does not lead throughout the count: X+ =10

E[X7] = 24__ z = 1% Pr(Case 1) + 0 % Pr(Case 2) .
That is
Pr(A leads throughout the count) = a-b
ughou unt) = ——— .
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