CS155/254: Probabilistic Methods in
Computer Science

The Multi-Armed Bandit
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Gambling in a Rigged Casino

® A collection of slot machines giving random rewards.

® Rewards' distributions of different machines may be different.

® Rewards' distributions unknown to the player.

How to maximize total reward in a sequence of T actions
(arm pulls)?
A good strategy must balance the tradeoff between:

@® Exploit: play arms that seem best based on current
information

® Explore: try other arms to get more information on possibly
better arms
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The Multi-Armed Bandit Problem

® Multi-armed bandit problems were studied for over 70 years in
economics, operation research and (more recently) is computer
science, as an abstraction of Reinforcement learning (RL).

e Applications:

Clinical trials — find the best of several experimental
treatments while minimizing damage to patients.

Adaptive routing - minimize delays by exploring alternative
paths.

Finance/Investment: optimal asset allocation.

Production: scheduling, resource allocation.

Economics: pricing a product.

Web: content matching, efficient crawling.

Robotics
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Stochastic Multi-Armed Bandit

® Set of k arms (actions)

® A set of kK unknown expectations fi1, ..., jik.

® The payoff of arm / is a random variable X; € [0, 1], with
expectation E[X; | = p;.

® Successive payoffs are independent events.

® Let /" = argmax;c[4) i1; be the optimal arm,

® |et iy be the arm pulled at step t.

® Given a sequence of T actions S(T) =1y,...,ir, the

expected "regret” of this sequence is

T

E[S(T)] = (ni- — mi)

t=1

Our goal is to minimize E[S(T)].
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First Attempt: Explore and Commit
Algorithm EaC:

® Pull each arm m times.
® Let M; be the empirical mean of arm / in the m activations.

© After the first km steps always activate arm
J = arg max;epx M.
Let A; = pj+ — pj be the expected loss of activating arm i.

Theorem

The expected regret of Algorithm EaC is

k k
= mA; + (T — km A;Pr (| j = argmax M;
’z; i+ ( ); ; (J g max ,>

For a fixed m, Pr(M; > M;+) > 0, thus
Z};l AjPr (j = arg maxie[x] /\/I,-) > 0.
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First Attempt: Explore and Commit

Algorithm EaC:
® Pull each arm m times.
® Let M; be the empirical mean of arm / in the m activations.
© After the first km steps always activate arm
J = arg max;e[x M.
Let A; = pj+ — pj be the expected loss of activating arm .

Theorem

The expected regret of Algorithm EaC is
k k
= mAH(T—km) > A;Pr (j = arg max M,-) = B+(T—km)C
-1 =1 ielk]
where B > 0 and C > 0 that are constants independent of T .

The expected regret is linear in T, since the algorithm stops
learning after a fixed (km) number of steps.
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Second Attempt: [-Greedy Algorithm

Algorithm Greedy(/5):
® Set M; = 0 for all arms.
® Repeat
@ With probability 3 choose j uniformly at random, else let
J = argmax;cy M.
@ Active arm j and update M;.

Theorem

The expected regret of the [5-Greedy Algorithm is
k
BT
22
=

The expected regret is linear in T because the algorithm continues
to explore after finding the optimal arm.
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The Explore and Commit algorithm stops exploring too early.

The -Greedy algorithm continues to explore even after finding an
optimal strategy.

Both algorithm don’t adapt their moves to the accuracy of their
estimates.
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Third Attempt: Upper Confidence Bound (UCB)
Algorithm
Algorithm UCB(«):

@ For all i € [k] activate arm / once, update M; and set N; = 1.
®Fort=k+1,..., T do:

@ Activate arm j = arg max;c[4] (M,- + %)
® Update M, and set N; = N; + 1

Theorem
The expected regret of UCB(«), o > 1 is bounded by

Z 24 +2a|ogT
a—1 A;

ic[k], A>0

The regret grows logarithmically in 7. This growth is
asymptotically optimal for this setting.
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Confidence Interval

Definition
An (e, 9)-confidence interval for a constant V is a random variable
("estimator”) V such that

Pr(V—e<V<V+4e)>1-0.

Let M;(m) be the average reward of arm / in m activations.
We estimate 1i; with the estimator M;(m),

Applying Hoeffding's inequality, we have
Pr(|M:(m) — ;| > €) < 22

For any § < 1,

—logé [—logd
Pr (;L, > M;(m) < p; + > 1-6

Note that the width of the interval decreases with the number of trials m.
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Algorithm UCB(«):
@ For all i € [k] activate arm i once, update M; and set N; = 1.
®Fort=k+1,...,T do:

@ Activate arm j = arg maxc(4] (l\/l,- + %)
® Update M, and set N; = V; +1

“logd JTga
P P — < M; < 1 >1-—0.
! (ll' 2m (m) S pit 2m -

UCB maintains confidence intervals for the estimates M;'s of the
constants fi;'s.

The estimate is updated (in M; and N;) when an arm is activated,
reducing the size of the interval.

The value of § is chosen for a union bound over the steps.
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Consider arm /, with A; > 0.

Let M;(s) and N;(s) be the values of the variables M; and N; at iteration
s.

If arm / was activated at iteration s, then

alogs alogs

i=(s)

@ Iogs @ Iogs
i — < pi ;

If N;(s) > 2438, then with probability 1 — 25—,

alogs alogs
A < pis < M
\/2,\, > < it i+ (s)+ ;- (5)

If IV ( 2QA'°§S, i is activated with probability < 25—,

But,
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Consider arm i, with A; > 0.

Lemma

Let N;(t) be the number of times arm i was activated in the first t
iterations. Then

2cclog t 2
A? a—1

E[N;i(1)] <

Proof: If N(s) > %, i is activated with probability 257,

i

20c|0 t 2clog t 2
Ev(] < 5=+ Y st SO S
2clog t i @
s>2alogt

A<
i

13/14



2a Iog t _ 2a log t 2
E[N;(t)] < + D), LT
>2aAI(§gt 1

The expected regret in T steps bounded by

S OEN(MIa < Y (20"A°igT+Off"l>

i€[k], i#i* i€[k], i#i*
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