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The Multi-Armed Bandit
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Gambling in a Rigged Casino

• A collection of slot machines giving random rewards.

• Rewards’ distributions of different machines may be different.

• Rewards’ distributions unknown to the player.

How to maximize total reward in a sequence of T actions
(arm pulls)?

A good strategy must balance the tradeoff between:

1 Exploit: play arms that seem best based on current
information

2 Explore: try other arms to get more information on possibly
better arms

2 / 14



The Multi-Armed Bandit Problem

• Multi-armed bandit problems were studied for over 70 years in
economics, operation research and (more recently) is computer
science, as an abstraction of Reinforcement learning (RL).

• Applications:
• Clinical trials – find the best of several experimental

treatments while minimizing damage to patients.
• Adaptive routing - minimize delays by exploring alternative

paths.
• Finance/Investment: optimal asset allocation.
• Production: scheduling, resource allocation.
• Economics: pricing a product.
• Web: content matching, efficient crawling.
• Robotics
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Stochastic Multi-Armed Bandit

• Set of k arms (actions)

• A set of k unknown expectations µ1, . . . , µk .

• The payoff of arm i is a random variable Xi ∈ [0, 1], with
expectation E [Xi ,] = µi .

• Successive payoffs are independent events.

• Let i∗ = argmaxj∈[k] µi be the optimal arm,

• Let it be the arm pulled at step t.

• Given a sequence of T actions S(T ) = i1, . . . , iT , the
expected ”regret” of this sequence is

E [S(T )] =
T∑
t=1

(µi∗ − µit )

Our goal is to minimize E [S(T )].
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First Attempt: Explore and Commit

Algorithm EaC:

1 Pull each arm m times.

2 Let Mi be the empirical mean of arm i in the m activations.

3 After the first km steps always activate arm
j = argmaxi∈[k]Mi .

Let ∆i = µi∗ − µi be the expected loss of activating arm i .

Theorem

The expected regret of Algorithm EaC is

=
k∑

i=1

m∆i + (T − km)
k∑

j=1

∆jPr

(
j = argmax

i∈[k]
Mi

)

For a fixed m, Pr(Mi > Mi∗) > 0, thus∑k
j=1∆jPr

(
j = argmaxi∈[k]Mi

)
> 0.
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First Attempt: Explore and Commit

Algorithm EaC:

1 Pull each arm m times.

2 Let Mi be the empirical mean of arm i in the m activations.

3 After the first km steps always activate arm
j = argmaxi∈[k]Mi .

Let ∆i = µi∗ − µi be the expected loss of activating arm i .

Theorem

The expected regret of Algorithm EaC is

=
k∑

j=1

m∆j+(T−km)
k∑

j=1

∆jPr

(
j = argmax

i∈[k]
Mi

)
= B+(T−km)C

where B > 0 and C > 0 that are constants independent of T .

The expected regret is linear in T , since the algorithm stops
learning after a fixed (km) number of steps.
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Second Attempt: β-Greedy Algorithm

Algorithm Greedy(β):

1 Set Mi = 0 for all arms.

2 Repeat

1 With probability β choose j uniformly at random, else let
j = argmaxi∈[k] Mi .

2 Active arm j and update Mj .

Theorem

The expected regret of the β-Greedy Algorithm is

≥ βT

k

k∑
i=1

∆i

The expected regret is linear in T because the algorithm continues
to explore after finding the optimal arm.
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The Explore and Commit algorithm stops exploring too early.

The β-Greedy algorithm continues to explore even after finding an
optimal strategy.

Both algorithm don’t adapt their moves to the accuracy of their
estimates.
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Third Attempt: Upper Confidence Bound (UCB)
Algorithm

Algorithm UCB(α):

1 For all i ∈ [k] activate arm i once, update Mi and set Ni = 1.

2 For t = k + 1, . . . ,T do:

1 Activate arm j = argmaxi∈[k]

(
Mi +

√
α log t
2Ni

)
.

2 Update Mj , and set Nj = Nj + 1

Theorem

The expected regret of UCB(α), α > 1 is bounded by∑
i∈[k], ∆i>0

(
2∆i

α− 1
+

2α logT

∆i

)

The regret grows logarithmically in T . This growth is
asymptotically optimal for this setting.
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Confidence Interval

Definition

An (ϵ, δ)-confidence interval for a constant V is a random variable
(”estimator”) Ṽ such that

Pr(Ṽ − ϵ ≤ V ≤ Ṽ + ϵ) ≥ 1− δ.

Let Mi (m) be the average reward of arm i in m activations.
We estimate µi with the estimator Mi (m),

Applying Hoeffding’s inequality, we have

Pr(|Mi (m)− µi | ≥ ϵ) ≤ 2e−2mϵ2

For any δ < 1,

Pr

(
µi −

√
− log δ

2m
≤ Mi (m) ≤ µi +

√
− log δ

2m

)
≥ 1− δ.

Note that the width of the interval decreases with the number of trials m.
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Algorithm UCB(α):

1 For all i ∈ [k] activate arm i once, update Mi and set Ni = 1.

2 For t = k + 1, . . . ,T do:

1 Activate arm j = argmaxi∈[k]

(
Mi +

√
α log t
2Ni

)
.

2 Update Mj , and set Nj = Nj + 1

Pr

(
µi −

√
− log δ

2m
≤ Mi (m) ≤ µi +

√
− log δ

2m

)
≥ 1− δ.

UCB maintains confidence intervals for the estimates Mi ’s of the
constants µi ’s.
The estimate is updated (in Mi and Ni ) when an arm is activated,
reducing the size of the interval.
The value of δ is chosen for a union bound over the steps.
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Consider arm i , with ∆i > 0.
Let Mi (s) and Ni (s) be the values of the variables Mi and Ni at iteration
s.
If arm i was activated at iteration s, then

Mi (s) +

√
α log s

2Ni (s)
≥ Mi∗(s) +

√
α log s

2Ni∗(s)

But,

Pr

(
µi −

√
α log s

2Ni (s)
≤ Mi (s) ≤ µi +

√
α log s

2Ni (s)

)
≥ 1− s−α.

If Ni (s) >
2α log s

∆2
i

, then with probability 1− 2s−α,

Mi (s)+

√
α log s

2Ni (s)
≤ µi+2

√
α log s

2Ni (s)
< µi+∆i ≤ µi∗ ≤ Mi∗(s)+

√
α log s

2Ni∗(s)

If Ni (s) >
2α log s

∆2
i

, i is activated with probability ≤ 2s−α.
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Consider arm i , with ∆i > 0.

Lemma

Let Ni (t) be the number of times arm i was activated in the first t
iterations. Then

E [Ni (t)] ≤
2α log t

∆2
i

+
2

α− 1
.

Proof: If Ni (s) ≥ 2α log s
∆2

i
, i is activated with probability 2s−α.

E [Ni (t)] ≤
2α log t

∆2
i

+
∑

s≥ 2α log t

∆2
i

2s−α ≤ 2α log t

∆2
i

+
2

α− 1
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E [Ni (t)] ≤
2α log t

∆2
i

+
∑

s≥ 2α log t

∆2
i

2s−α ≤ 2α log t

∆2
i

+
2

α− 1

The expected regret in T steps bounded by∑
i∈[k], i ̸=i∗

E [Ni (T )]∆i ≤
∑

i∈[k], i ̸=i∗

(
2α logT

∆i
+

2∆i

α− 1

)
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