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Randome Variables and Expectation
Example: QuickSort

Procedure Q_S(S);
Input: An array S.
Output: The array S in sorted order.

@ Choose a random element y uniformly from S.

® Compare all elements of S to y. Let

Si={xeS—{y}Ix<y}, S={xeS—{y}|x>y}

©® Return the list:
Q-S(51),y, Q-S(S2).



Let T(n) = number of comparisons in a run of QuickSort on an
array of size n.

T(n) is a random variable.

Theorem

The expected number of steps in sorting an array of n elements
using QuickSort is

E[T(n)] = O(nlogn).



Random Variable

Definition

A random variable X on a sample space 2 is a real-valued
function on ; thatis, X : Q2 — R

A vector random variable is X9 : Q — R

A discrete random variable is a random variable that takes on only
a finite or countably infinite number of values.

Discrete random variable X and real value a: the event “X = a&"
represents the set {s € Q: X(s) = a}.

PriX=a)=Pr({sc Q: X(s)=a})= >  Pr(s)

seQ:X(s)=a



Independence

Definition

Two events A and B are independent if and only if
Pr(AnB) = Pr(A)-Pr(B)
Two random variables X and Y are independent if and only if
Pr(X=x)N(Y=y)) = Pr(X=x)-Pr(Y =y)

for all values x and y. Similarly, random variables Xi, X5, ... Xj
are mutually independent if and only if for any subset / C [1, k]
and any values x;,i € [,

Pr <m X,' = X,'> = H PF(X,' = X,').

iel iel



Expectation

Definition
The expectation of a discrete random variable X, denoted by
E[X], is given by

E[X] = ) iPr(X=1),

!

where the summation is over all values in the range of X. The
expectation is finite if > . |i| Pr(X = i) converges; otherwise, the
expectation is unbounded.

The expectation (or mean or average) is a weighted sum over all
possible values of the random variable.



Median

The median of a random variable X is a value m such

Pr(X <m)<1/2 and Pr(X>m)<1/2.



Quicksort

Procedure Q_S(S);

Input: An array S.

Output: The array S in sorted order.
@ Choose a random element y uniformly from S.
® Compare all elements of S to y. Let

Si={xeS—{y}|x<y}, S={xeS—{y}lx>y}

©® Return the list:
Q-5(51),y, R-5(S2).

The expected number of steps in sorting an array of n elements
using QuickSort is

E[T(n)] = O(nlogn).



Pivot
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https://medium.com, ing-quicksort-the-fast-and til ting-algorithm-2c¢1214755ce9



Proof:

Let s1,....,5, be the elements of S is sorted order.

For i=1,...,n, and j > i, define 0-1 random variable X; ;, s.t.

Xij = 1iff s; is directly compared to s; in the run of the algorithm,
else X;; = 0.

The number of comparisons in running the algorithm is

T(n)=> > X

i=1 j>i
We are interested in

E[T(m]=ED_ > X =YY EXjl

i=1 j>i i=1 j>i



Linearity of Expectation

Theorem

For any two random variables X and Y

E[X+Y] = E[X] + E[Y].

Lemma

For any constant ¢ and discrete random variable X,

E[cX] = cE[X].



Linearity of Expectation

EX+Y] = > ) (x+y)Pr(X=xnY=y)
xeD(X) yeD(Y)

= Z Z Pr(X=xNY =y)+

x€D(X) yeD(Y)

Z Z Pr(X=xNY =y)

yeD(Y) xeD(X)

= Z xPr(X = x) + Z yPr(Y =y)
x€D(X) yeD(Y)

= E[X]+ E[Y]



We are interested in E[T(n)] = > 1, >, E[Xi ]

Since X is a 0-1 random variable,

E[X,"j] =0- Pr(X,-vj = 0) +1- PF(X,'J' = 1) = Pr(X,-_J- = 1)

What is the probability that X;; = 17

si is compared to s; iff either s; or s; is chosen as a “split item”
before any of the j — / — 1 elements between s; and s; are chosen.

Elements are chosen uniformly at random — elements in the set
[si, Sit1, ..., 5] are chosen uniformly at random.

Xi j = 1 iff the first split item chosen in the set {s;, sj;1,.....5;} is

either s; or s;.
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E[T] = E[ZZX/J] *ZZE[XIJ] _ZZ

i=1 j>i i=1 j>i 111>1

IA

”Z P < 2nH, =2nlogn+ O(n)
k=1

\\|_A

ey

/ —dx =logn

logn < H,<logn+1

Theorem

The expected number of steps in sorting an array of n elements using
QuickSort is E[T(n)] = O(nlogn).



A Deterministic QuickSort

Procedure DQ_S(S);
Input: A set S.
Output: The set S in sorted order.

@ Let y be the first element in S.
® Compare all elements of S to y. Let

Si={xeS—{ytIx<y}l S={xeS—{yj[x>y}

(Elements is 51 and Sy are in th same order as in S.)
©® Return the list:

DQ-5(51),, DQ-5(52).



Probabilistic Analysis of QuickSort

Theorem

The expected run time of DQ_S on a random input, uniformly
chosen from all possible permutation of S is O(nlog n).

Proof.

Set X; ; as before.

If all permutations have equal probability, all permutations of
Sj, ..., 5 have equal probability, thus

2
Pr(X,-J) = 1,77 i 1.
E[ZZXU] = O(nlog n).
i=1 j>i



Randomized Algorithms:
® Analysis is true for any input.

® The sample space is the space of random choices made by the
algorithm.

® Repeated runs are independent.
Probabilistic Analysis:
® The sample space is the space of all possible inputs.

® |f the algorithm is deterministic repeated runs give the same
output.



Algorithm classification

A Monte Carlo Algorithm is a randomized algorithm that may
produce an incorrect solution.

For decision problems: A one-side error Monte Carlo algorithm
errs only one one possible output, otherwise it is a two-side error
algorithm.

A Las Vegas algorithm is a randomized algorithm that always
produces the correct output.

In both types of algorithms the run-time is a random variable.



Balls and Bins and the Random Allocations
Paradigm

Random Allocations

m marbles/balls/items

are placed independently and
uniformly at random into

n urns/bins/boxes

CS applications: hashing, load balancing, routing,
distributed memory, lower bounds,...

https://dornsife.usc. i urn.pdf




The Coupon Collector Problem

® We place balls independently and uniformly at random in n
boxes.

® Let X be the number of balls placed until no box is empty..
We'll prove:
Theorem

® E[X] = nH, = nlogn+ ©(n)
® Pr(X > 2H,) = 0(3).

n

Application: How many trials are needed to verify encrypted
membership?



We place balls independently and uniformly at random in n
boxes.

Let X be the number of balls placed until no box is empty.
Let X; = number of balls placed when there were exactly i — 1
non-empty boxes.

X=>1,X.

Xj is the number of trials till we hit an empty box when / — 1
of the n boxes are not empty.

X; is a geometric random variable with parameter
pi=1-=L



The Geometric Distribution

Definition
A geometric random variable X with parameter p is defined by the
probability distribution on n=1,2,....

Pr(X = n) = (1 - p)" p.

Example: repeatedly draw independent Bernoulli random variables
with parameter p > 0 until we get a 1. Let X be number of trials
up to and including the first one. Then X is a geometric random

variable with parameter p.



Memoryless Distribution

Lemma

For a geometric random variable with parameter p and n > 0,

Pr(X=n+k| X >k) = Pr(X=n).

Proof.

Pr(X =n+k | X > k)

Pr((X = n+ k) N (X > k))

Pr(X > k)
Pr(X=n+k) (1—p)"tk1p
Pr(X > k) X2 (1—-p)p
(1 _ p)nJrkflp - .
e i et

Pr(X = n).



Conditional Expectation

E[Y | Z=2]=) yPr(Y=y|Z=2)

where the summation is over all y in the range of Y.

Lemma

For any random variables X and Y,

E[X] = E[Ex[X | Y=Y Pr(Y =y)E[X | Y =y],
y

where the sum is over all values in the range of Y.



Geometric Random Variable: Expectation

Let X be a geometric random variable with parameter p.

Let Y = 1 if the first trail is a success, Y = 0 otherwise.

E[X] = Pr(Y=0)E[X | Y =0]+Pr(Y =1)E[X | Y = 1]
= (1—p)E[X | Y =0]+pE[X | Y =1].

If Y =0 let Z be the number of trials after the first one.
EX]=(1-pEZ+1]+p-1=(1-p)E[Z]+1
But E[Z] = E[X], giving E[X] =1/p.



Lemma

Let X be a discrete random variable that takes on only
non-negative integer values. Then

E[X] = iPr(Xzi).
S

iPr(X >i) = iiPr(X =)
i=1 i=1 j=i
oo J

= > > Pr(x=))
j=1 i=1

= > jPr(X =j)=E[X].

j=1



For a geometric random variable X with parameter p,

o0

PrX=i)=) (1-p)"'p=(1-p) "

n=j

E[X] = ) Pr(X=>1)



Back to the Coupon Collector Problem

® Let X; = number of balls placed when there were exactly i — 1
non-empty boxes.

° X =311 X
® X; is a geometric random variable with parameter p; = 1 — %
1 n
EX]=—=——.
X pi n—i—+1
EX] = E|> X|=> EX]
i=1 i=1

n n

n 1
;m:n27:nlnn+e(n).

i=1

Let X(«) be the number of balls placed till an boxes are not empty:

an n (1—«a)
1

EX(@)] = Y ——gx > g ZW Z )= nin o

i=1 i=(1—a)n




Bounding Deviation from Expectation

Theorem

[Markov Inequality] For any non-negative random variable

Pr(X > a) < %

a

Proof.

EX] =) iPr(X=1i)>a) _ Pr(X=i)=aPr(X > a).

i>a



Back to the Coupon Collector’'s Problem

We place balls independently and uniformly at random in n
boxes.

Let X be the number of balls placed until all boxes are not
empty.

E[X] = nH,=nlnn+ ©(n)

What is Pr(X > 2E[X])?

Applying Markov's inequality

Pr(X > 2nH,) <

N —

Can we do better?



Variance

Definition

The variance of a random variable X is

Var[X] = E[(X - E[X])’] = E[X?] - (E[X])*.

Definition

The standard deviation of a random variable X is

o(X) = +/ Var[X].



Example: Let X be a 0-1 random variable with
Pr(X =0)=Pr(X =1)=1/2.

E[X] = 1/2.

Var[X] = %(1 — %)2 + 1(0 _ 1)2 _



Chebyshev's Inequality

Theorem

For any random variable

Pr(|X — E[X]| > a) <

Var[X]
a?

Proof.

Pr(IX — E[X]| > a) = Pr((X — E[X])? > &%)
By Markov inequality

Pr((X — E[X])? > a°) <




For any random variable

Pr(1X — E[X]| > a0[X]) < .

For any random variable

Var[X]

Pr(|X — E[X]| > €E[X]) < 2(EX])E



If X and Y are independent random variable

E[XY] = E[X]- E[Y],

Proof
EXY] =3 3 i jPr((X =i)n(Y =) =
7
ZZUPr(Xzi)-Pr(Y:j):
(D iPr(X ZJPr

i



If X and Y are independent random variable

Var[X + Y] = Var[X] + Var[Y].

Proof.
Var[X + Y] = E[(X + Y — E[X] — E[Y])?] =

E[(X — E[X])? + (Y — E[Y])* + 2(X — E[X])(Y — E[Y])] =
Var[X] + Var[Y] + 2E[X — E[X]]E[Y — E[Y]]

Since the random variables X — E[X] and Y — E[Y] are
independent.
But E[X — E[X]] = E[X] — E[X] = 0. O



Variance of a Geometric Random Variable

We use

Var[X] = E[(X — E[X])?] = E[X?] - (E[X])*

To compute E[X?], let Y = 1 if the first trail is a success,
Y = 0 otherwise.

E[X?]

Pr(Y =0)E[X? | Y =0] +Pr(Y = 1)E[X? | Y =1]
= (1-p)E[X?| Y =0]+pE[X?| Y =1].

If Y =0 let Z be the number of trials after the first one.

E[XY] = (1-pE(Z+1)+p-1
— (1 p)E[Z%] +2(1 - p)E[Z] + 1.



® E[Z] =1/p and E[Z?] = E[X?].

E[X?] = (1-pE[(Z+1))]+p-1
= (1— p)E[Z%] +2(1 - p)E[Z] + 1,

E[X?] = (1-p)E[X*|+2(1—p)/p+1 = (1-p)E[X?]+(2—p)/p,

° E[X2 = (2 p)/p%

2 — 1 1-—
Varlx] = B - xR = 20 P




Back to the Coupon Collector’'s Problem

We place balls independently and uniformly at random in n
boxes.

Let X be the number of balls placed until all boxes are not
empty.

E[X] = nH,=nlnn+ ©(n)

What is Pr(X > 2E[X])?

Applying Markov's inequality

Pr(X > 2nH,) <

N —

Can we do better?



Let X; = number of balls placed when there were exactly i — 1
non-empty boxes.

X=21Xi

X; is a geometric random variable with parameter
pi=1-"=1

Var[X]] < & < (+25)%

n 2 n 2
n 1 T™“n
Varlx] =S Varlx] <3 (——) =3 (3) < T8
Xl =2 Varl ]_I,1<ni+1> 5 I__1<i> =76



Let X; = number of balls placed when there were exactly i — 1
non-empty boxes.

X =3 X
X; is a geometric random variable with parameter
pi=1-"=1

.

Var[Xi] < 5 < (247)%

n n n 2 5 1 2 w202
i=1 i=1 i

By Chebyshev's inequality

n’m?/6 w2 1
Pr(|X — nH,| > nH,) < (Fn)2 ~ 6(H,)? (0] ( >

Can we do better?



Direct Bound

The probability of not obtaining the i-th coupon after
nln n+ cn steps:

n(In n+c)
<1 - 1> et _ L

n en

By a union bound, the probability that some coupon has not

been collected after nlnn+ cn step is e™°.

The probability that all coupons are not collected after 2ninn
steps is at most 1/n.

The probability that all coupons are not collected after
n(lnn+ 2loglog n) steps is O ( ! )

In?n




