
CS155/254: Probabilistic Methods in
Computer Science

Chapters 2 & 3



Randome Variables and Expectation
Example: QuickSort

Procedure Q S(S);
Input: An array S .
Output: The array S in sorted order.

1 Choose a random element y uniformly from S .

2 Compare all elements of S to y . Let

S1 = {x ∈ S − {y} | x ≤ y}, S2 = {x ∈ S − {y} | x > y}.

3 Return the list:
Q S(S1), y ,Q S(S2).



Let T (n) = number of comparisons in a run of QuickSort on an
array of size n.

T (n) is a random variable.

Theorem

The expected number of steps in sorting an array of n elements
using QuickSort is

E [T (n)] = O(n log n).



Random Variable

Definition

A random variable X on a sample space Ω is a real-valued
function on Ω; that is, X : Ω → R
A vector random variable is X d : Ω → Rd

A discrete random variable is a random variable that takes on only
a finite or countably infinite number of values.

Discrete random variable X and real value a: the event “X = a”
represents the set {s ∈ Ω : X (s) = a}.

Pr(X = a) = Pr({s ∈ Ω : X (s) = a}) =
∑

s∈Ω:X (s)=a

Pr(s)



Independence

Definition

Two events A and B are independent if and only if

Pr(A ∩ B) = Pr(A) · Pr(B)

Two random variables X and Y are independent if and only if

Pr((X = x) ∩ (Y = y)) = Pr(X = x) · Pr(Y = y)

for all values x and y . Similarly, random variables X1,X2, . . .Xk

are mutually independent if and only if for any subset I ⊆ [1, k]
and any values xi ,i ∈ I ,

Pr

(⋂
i∈I

Xi = xi

)
=

∏
i∈I

Pr(Xi = xi ).



Expectation

Definition

The expectation of a discrete random variable X , denoted by
E[X ], is given by

E[X ] =
∑
i

i Pr(X = i),

where the summation is over all values in the range of X . The
expectation is finite if

∑
i |i |Pr(X = i) converges; otherwise, the

expectation is unbounded.

The expectation (or mean or average) is a weighted sum over all
possible values of the random variable.



Median

Definition

The median of a random variable X is a value m such

Pr(X < m) ≤ 1/2 and Pr(X > m) < 1/2.



Quicksort

Procedure Q S(S);
Input: An array S .
Output: The array S in sorted order.

1 Choose a random element y uniformly from S .
2 Compare all elements of S to y . Let

S1 = {x ∈ S − {y} | x ≤ y}, S2 = {x ∈ S − {y} | x > y}.

3 Return the list:
Q S(S1), y ,Q S(S2).

Theorem

The expected number of steps in sorting an array of n elements
using QuickSort is

E [T (n)] = O(n log n).



https://medium.com/@nathaldawson/unraveling-quicksort-the-fast-and-versatile-sorting-algorithm-2c1214755ce9



Proof:

Let s1, ...., sn be the elements of S is sorted order.
For i = 1, ..., n, and j > i , define 0-1 random variable Xi ,j , s.t.
Xi ,j = 1 iff si is directly compared to sj in the run of the algorithm,
else Xi ,j = 0.
The number of comparisons in running the algorithm is

T (n) =
n∑

i=1

∑
j>i

Xi ,j .

We are interested in

E [T (n)] = E [
n∑

i=1

∑
j>i

Xi ,j ] =
n∑

i=1

∑
j>i

E [Xi ,j ].



Linearity of Expectation

Theorem

For any two random variables X and Y

E [X + Y ] = E [X ] + E [Y ].

Lemma

For any constant c and discrete random variable X ,

E[cX ] = cE[X ].



Linearity of Expectation

E [X + Y ] =
∑

x∈D(X )

∑
y∈D(Y )

(x + y)Pr(X = x ∩ Y = y)

=
∑

x∈D(X )

x
∑

y∈D(Y )

Pr(X = x ∩ Y = y) +

∑
y∈D(Y )

y
∑

x∈D(X )

Pr(X = x ∩ Y = y)

=
∑

x∈D(X )

xPr(X = x) +
∑

y∈D(Y )

yPr(Y = y)

= E [X ] + E [Y ]



We are interested in E [T (n)] =
∑n

i=1

∑
j>i E [Xi ,j ].

Since Xi ,j is a 0-1 random variable,

E [Xi ,j ] = 0 · Pr(Xi ,j = 0) + 1 · Pr(Xi ,j = 1) = Pr(Xi ,j = 1).

What is the probability that Xi ,j = 1?

si is compared to sj iff either si or sj is chosen as a “split item”
before any of the j − i − 1 elements between si and sj are chosen.

Elements are chosen uniformly at random → elements in the set
[si , si+1, ...., sj ] are chosen uniformly at random.

Xi ,j = 1 iff the first split item chosen in the set {si , si+1, ...., sj} is
either si or sj .

E [Xi ,j ] = Pr(Xi ,j = 1) =
2

j − i + 1
.



E [T ] = E [
n∑

i=1

∑
j>i

Xi,j ] =
n∑

i=1

∑
j>i

E [Xi,j ] =
n∑

i=1

∑
j>i

2

j − i + 1

≤ n
n∑

k=1

2

k
≤ 2nHn = 2n log n + O(n)

Hn =
n∑

i=1

1

i
≈
∫ n

1

1

x
dx = log n

log n ≤ Hn ≤ log n + 1

Theorem

The expected number of steps in sorting an array of n elements using
QuickSort is E [T (n)] = O(n log n).



A Deterministic QuickSort

Procedure DQ S(S);
Input: A set S .
Output: The set S in sorted order.

1 Let y be the first element in S .

2 Compare all elements of S to y . Let

S1 = {x ∈ S − {y} | x ≤ y}, S2 = {x ∈ S − {y} | x > y}.

(Elements is S1 and S2 are in th same order as in S .)

3 Return the list:

DQ S(S1), y ,DQ S(S2).



Probabilistic Analysis of QuickSort

Theorem

The expected run time of DQ S on a random input, uniformly
chosen from all possible permutation of S is O(n log n).

Proof.

Set Xi ,j as before.
If all permutations have equal probability, all permutations of
Si , ...,Sj have equal probability, thus

Pr(Xi ,j) =
2

j − i + 1
.

E [
n∑

i=1

∑
j>i

Xi ,j ] = O(n log n).



Randomized Algorithms:

• Analysis is true for any input.

• The sample space is the space of random choices made by the
algorithm.

• Repeated runs are independent.

Probabilistic Analysis:

• The sample space is the space of all possible inputs.

• If the algorithm is deterministic repeated runs give the same
output.



Algorithm classification

A Monte Carlo Algorithm is a randomized algorithm that may
produce an incorrect solution.
For decision problems: A one-side error Monte Carlo algorithm
errs only one one possible output, otherwise it is a two-side error
algorithm.
A Las Vegas algorithm is a randomized algorithm that always
produces the correct output.
In both types of algorithms the run-time is a random variable.



Balls and Bins and the Random Allocations
Paradigm

Random Allocations

https://dornsife.usc.edu/assets/sites/406/docs/505b/polya.urn.pdf

m marbles/balls/items 
are placed independently and 
uniformly at random into 
n urns/bins/boxes

4.1 Edge-Reinforced Random Walk via Polya’s urn

Imagine for each vertex j 2 Z we associate it with a Polya’s urn Uj with two colors black and white.
The black color indicates ‘to go up‘ and the white color indicates ‘to go down‘. The number of white
and black balls in urn Uj at time n keeps track of the weight of edge ej�1 = hj � 1, ji and ej = hj, j +1i,
respectively.

For example, if we are to model a ERRW process with all initial weights and all increments equal to
1(which is called Diaconis walk), we start at vertex 0 with 1 ball of each color in urn U0. We draw a ball
from the urn U0 and walk in the direction indicated by the color of the ball. We then come to a new
vertex with an associated urn, which will decide the next step. Once we reach a new vertex j for the
first time, we visit ej�1 but never ej . So if j > 0, we add one more black ball to the urn Uj at vertex
j, and it should have 2 black balls and 1 white ball at the first time we reach the vertex j. Similarly, if
j < 0, then the urn Uj at vertex j has 1 black balls and 2 white balls at the first time we reach vertex j.

However, in the above setting, the urns associating with vertices are not independent of each other.
Consider the following scheme in the Diaconis walk. The first move is chosen by randomly drawing a
ball from the urn U0, and then we walk along the edge e1(or e0) in the direction corresponding to the
resulting color. Once we leave the vertex 0, we put back the ball the drawn ball into the urn, along
with TWO more balls of the same color. The idea behind this scheme is that at the time the walk ever
returns to the vertex 0 and want to use urn U0 to make the next decision, it must have already traversed
the edge e1(or e0) twice, once from the vertex 0 to vertex 1 and once in the reversed direction back.
Thus the weight of the chosen edge will have increased by exactly two. For the other vertex j 6= 0, they
behave in the same way as that for the vertex 0 once after the walk reaches it. Initially, we put 2 black
balls and 1 white ball into the urn Uj for j > 0, and we put 1 black ball and 2 white balls into the urn
Uj for j < 0. It is so because upon the first time the walk arrives at the vertex j, the edge ej�1 must
have already traversed once from vertex j � 1 to j. See Figure 4.1 for the demonstration of the initial
setting of the Diaconis walk via Polya’s urn. Under this scheme, the urns at each vertex are independent
because the outcome of drawing from one urn cannot a↵ect any other, which is a very nice property.

Figure 1: The initial setting of the Diaconis walk via Polya’s urn [ref [2]]

For a general ERRW with reinforcement of a sequence ~↵ = ↵1,↵2, . . . ,. Define Tk;i = min{Tk;i >
Tk�1;i; XTk;i

= i}, i.e. the k-th time the walk stops at i. The setting of the Polya’s Urns model
corresponding to the ERRW is as follows.

1. Now first let’s look at the origin. T0;0 = 0, and the weight is (1, 1). If the first move is to the
right, then the weight becomes (1, 1 + a1), and at time T1;0, the first time the walk comes back,
the weight becomes (1, 1 + a1 + a2). Similarly, if the first move was to the left, the weight at T1;0

will be (1 + a1 + a2, 1). Actually this means the origin can be thought of as a Polya’s urn, with 1
ball of each color. And the replacement vector will be (a1 + a2, a3 + a4, · · · ).

2. Now we extend the concept of associating an urn with each point to the rest. For the points to the
right of the origin, they can also be thought of as Polya’s urn each. The replacement vector will
be exactly the same (a1 + a2, a3 + a4, · · · ) for the ball with color representing going to the right,
the initial weight is (1 + a1, 1), and the replacement vector representing going to the left is now
(a2 + a3, a4 + a5, · · · ).

3. For the points to the left of the origin, the situation just a mirror of the above.

7

CS applications: hashing, load balancing, routing, 
distributed memory, lower bounds,…



The Coupon Collector Problem

• We place balls independently and uniformly at random in n
boxes.

• Let X be the number of balls placed until no box is empty..

We’ll prove:

Theorem

1 E [X ] = nHn = n log n +Θ(n)

2 Pr(X ≥ 2Hn) = O( 1n ).

Application: How many trials are needed to verify encrypted
membership?



• We place balls independently and uniformly at random in n
boxes.

• Let X be the number of balls placed until no box is empty.

• Let Xi = number of balls placed when there were exactly i − 1
non-empty boxes.

• X =
∑n

i=1 Xi .

• Xi is the number of trials till we hit an empty box when i − 1
of the n boxes are not empty.

• Xi is a geometric random variable with parameter
pi = 1− i−1

n .



The Geometric Distribution

Definition

A geometric random variable X with parameter p is defined by the
probability distribution on n = 1, 2, . . ..

Pr(X = n) = (1− p)n−1p.

Example: repeatedly draw independent Bernoulli random variables
with parameter p > 0 until we get a 1. Let X be number of trials
up to and including the first one. Then X is a geometric random
variable with parameter p.



Memoryless Distribution

Lemma

For a geometric random variable with parameter p and n > 0,

Pr(X = n + k | X > k) = Pr(X = n).

Proof.

Pr(X = n + k | X > k) =
Pr((X = n + k) ∩ (X > k))

Pr(X > k)

=
Pr(X = n + k)

Pr(X > k)
=

(1− p)n+k−1p∑∞
i=k(1− p)ip

=
(1− p)n+k−1p

(1− p)k
= (1− p)n−1

= Pr(X = n).



Conditional Expectation

Definition

E[Y | Z = z ] =
∑
y

y Pr(Y = y | Z = z),

where the summation is over all y in the range of Y .

Lemma

For any random variables X and Y ,

E[X ] = Ey [EX [X | Y ]] =
∑
y

Pr(Y = y)E [X | Y = y ],

where the sum is over all values in the range of Y .



Geometric Random Variable: Expectation

• Let X be a geometric random variable with parameter p.

• Let Y = 1 if the first trail is a success, Y = 0 otherwise.

•

E[X ] = Pr(Y = 0)E[X | Y = 0] + Pr(Y = 1)E[X | Y = 1]

= (1− p)E[X | Y = 0] + pE[X | Y = 1].

• If Y = 0 let Z be the number of trials after the first one.

• E[X ] = (1− p)E[Z + 1] + p · 1 = (1− p)E[Z ] + 1

• But E[Z ] = E[X ], giving E[X ] = 1/p.



Lemma

Let X be a discrete random variable that takes on only
non-negative integer values. Then

E[X ] =
∞∑
i=1

Pr(X ≥ i).

Proof.

∞∑
i=1

Pr(X ≥ i) =
∞∑
i=1

∞∑
j=i

Pr(X = j)

=
∞∑
j=1

j∑
i=1

Pr(X = j)

=
∞∑
j=1

j Pr(X = j) = E[X ].

The interchange of (possibly) infinite summations is justified,
because the terms being summed are all non-negative.



For a geometric random variable X with parameter p,

Pr(X ≥ i) =
∞∑
n=i

(1− p)n−1p = (1− p)i−1.

E[X ] =
∞∑
i=1

Pr(X ≥ i)

=
∞∑
i=1

(1− p)i−1

=
1

1− (1− p)

=
1

p



Back to the Coupon Collector Problem

• Let Xi = number of balls placed when there were exactly i − 1
non-empty boxes.

• X =
∑n

i=1 Xi .

• Xi is a geometric random variable with parameter pi = 1− i−1
n .

E[Xi ] =
1

pi
=

n

n − i + 1
.

E[X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi ]

=
n∑

i=1

n

n − i + 1
= n

n∑
i=1

1

i
= n ln n +Θ(n).

Let X (α) be the number of balls placed till αn boxes are not empty:

E[X (α)] =
αn∑
i=1

n

n − i + 1
≈

n∑
i=(1−α)n

n

i
= n(

n∑
i=1

1

i
−

(1−α)n∑
i=1

1

i
) = n ln

1

1− α



Bounding Deviation from Expectation

Theorem

[Markov Inequality] For any non-negative random variable

Pr(X ≥ a) ≤ E [X ]

a
.

Proof.

E [X ] =
∑

iPr(X = i) ≥ a
∑
i≥a

Pr(X = i) = aPr(X ≥ a).



Back to the Coupon Collector’s Problem

• We place balls independently and uniformly at random in n
boxes.

• Let X be the number of balls placed until all boxes are not
empty.

• E [X ] = nHn = n ln n +Θ(n)

• What is Pr(X ≥ 2E[X ])?

• Applying Markov’s inequality

Pr(X ≥ 2nHn) ≤
1

2
.

• Can we do better?



Variance

Definition

The variance of a random variable X is

Var [X ] = E[(X − E[X ])2] = E[X 2]− (E[X ])2.

Definition

The standard deviation of a random variable X is

σ(X ) =
√

Var [X ].



Example: Let X be a 0-1 random variable with
Pr(X = 0) = Pr(X = 1) = 1/2.

E [X ] = 1/2.

Var [X ] =
1

2
(1− 1

2
)2 +

1

2
(0− 1

2
)2 =

1

4
.



Chebyshev’s Inequality

Theorem

For any random variable

Pr(|X − E [X ]| ≥ a) ≤ Var [X ]

a2
.

Proof.

Pr(|X − E [X ]| ≥ a) = Pr((X − E [X ])2 ≥ a2)

By Markov inequality

Pr((X − E [X ])2 ≥ a2) ≤ E [(X − E [X ])2]

a2

=
Var [X ]

a2



Theorem

For any random variable

Pr(|X − E [X ]| ≥ aσ[X ]) ≤ 1

a2
.

Theorem

For any random variable

Pr(|X − E [X ]| ≥ ϵE [X ]) ≤ Var [X ]

ϵ2(E [X ])2
.



Theorem

If X and Y are independent random variable

E [XY ] = E [X ] · E [Y ],

Proof.

E [XY ] =
∑
i

∑
j

i · jPr((X = i) ∩ (Y = j)) =

∑
i

∑
j

ijPr(X = i) · Pr(Y = j) =

(
∑
i

iPr(X = i))(
∑
j

jPr(Y = j)).



Theorem

If X and Y are independent random variable

Var [X + Y ] = Var [X ] + Var [Y ].

Proof.

Var [X + Y ] = E [(X + Y − E [X ]− E [Y ])2] =

E [(X − E [X ])2 + (Y − E [Y ])2 + 2(X − E [X ])(Y − E [Y ])] =

Var [X ] + Var [Y ] + 2E [X − E [X ]]E [Y − E [Y ]]

Since the random variables X − E [X ] and Y − E [Y ] are
independent.
But E [X − E [X ]] = E [X ]− E [X ] = 0.



Variance of a Geometric Random Variable
• We use

Var [X ] = E[(X − E[X ])2] = E[X 2]− (E[X ])2.

• To compute E[X 2], let Y = 1 if the first trail is a success,
Y = 0 otherwise.

•

E[X 2] = Pr(Y = 0)E[X 2 | Y = 0] + Pr(Y = 1)E[X 2 | Y = 1]

= (1− p)E[X 2 | Y = 0] + pE[X 2 | Y = 1].

• If Y = 0 let Z be the number of trials after the first one.
•

E[X 2] = (1− p)E[(Z + 1)2] + p · 1
= (1− p)E[Z 2] + 2(1− p)E[Z ] + 1,



• E[Z ] = 1/p and E[Z 2] = E[X 2].

E[X 2] = (1− p)E[(Z + 1)2] + p · 1
= (1− p)E[Z 2] + 2(1− p)E[Z ] + 1,

E[X 2] = (1−p)E[X 2]+2(1−p)/p+1 = (1−p)E[X 2]+(2−p)/p,

• E[X 2] = (2− p)/p2.

Var [X ] = E[X 2]− E[X ]2 =
2− p

p2
− 1

p2
=

1− p

p2
.



Back to the Coupon Collector’s Problem

• We place balls independently and uniformly at random in n
boxes.

• Let X be the number of balls placed until all boxes are not
empty.

• E [X ] = nHn = n ln n +Θ(n)

• What is Pr(X ≥ 2E[X ])?

• Applying Markov’s inequality

Pr(X ≥ 2nHn) ≤
1

2
.

• Can we do better?



• Let Xi = number of balls placed when there were exactly i − 1
non-empty boxes.

• X =
∑n

i=1 Xi .

• Xi is a geometric random variable with parameter
pi = 1− i−1

n .

• Var [Xi ] ≤ 1
p2

≤ ( n
n−i+1)

2.

•

Var [X ] =
n∑

i=1

Var [Xi ] ≤
n∑

i=1

(
n

n − i + 1

)2

= n2
n∑

i=1

(
1

i

)2

≤ π2n2

6
.

• We used
∑∞

n=1
1
n2

= π2

6 .



• Let Xi = number of balls placed when there were exactly i − 1
non-empty boxes.

• X =
∑n

i=1 Xi .

• Xi is a geometric random variable with parameter
pi = 1− i−1

n .

• Var [Xi ] ≤ 1
p2

≤ ( n
n−i+1)

2.

•

Var [X ] =
n∑

i=1

Var [Xi ] ≤
n∑

i=1

(
n

n − i + 1

)2

= n2
n∑

i=1

(
1

i

)2

≤ π2n2

6
.

• By Chebyshev’s inequality

Pr(|X − nHn| ≥ nHn) ≤
n2π2/6

(nHn)2
=

π2

6(Hn)2
= O

(
1

ln2 n

)
.

• Can we do better?



Direct Bound

• The probability of not obtaining the i-th coupon after
n ln n + cn steps:(

1− 1

n

)n(ln n+c)

< e−(ln n+c) =
1

ecn
.

• By a union bound, the probability that some coupon has not
been collected after n ln n + cn step is e−c .

• The probability that all coupons are not collected after 2n ln n
steps is at most 1/n.

• The probability that all coupons are not collected after

n(ln n + 2 log log n) steps is O
(

1
ln2 n

)
.


