
CS 1550/2540: Probabilistic Methods in
Computer Science

CS 1550/2540: Probabilistic Methods in
Computer Science

Introduction + Chapter 1

Overview

• CSCI 1550/2540 is a theory/math course - analysis, theorems,
proofs. No implementations.

• The course covers modern mathematics at the interface of
probability theory and computation

• Formulates, and explains many of the great successes of
computing, such as machine learning, cryptography, modern
finance, computational biology, etc.

• The course focuses on tools, not applications.

This course is different from most courses in CS!!

Why Probabilistic Methods?

Almost any advance computing application today has some
randomization/statistical/machine learning components:

• Randomized algorithms - random steps help!
• Efficiency: Hashing, Quicksort, ...
• Security and Privacy: Open key cryptography, one way

function,...
• Monte Carlo methods: scientific computing, finance, weather

forecast,...

• Probabilistic analysis of algorithms - Theoretically ”hard to
solve” problems are often not that hard in practice.

• Modeling data
• Statistical machine learning
• Data mining
• Recommendation systems

The ”magic” of modern computing is that most probabilistic and
statistical components are well hidden.

• A shopping site tells you that your credit card transaction is
secure, not that it’s probabilistically secure.

• A chatbot (LLM) gives you an answer. It doesn’t specify the
sequence of random steps that led to that answer, and may
lead to another answer in a different execution.

Do you need to understand the probabilistic components of your
computation?
Most software development work relies on ”off-the-shelf”, well
tested applications, but someone must be able to understand the
underlying theory, evaluate the quality of the results, and develop
new applications.

Course Details - Main Topics

1 Basic randomized algorithms and probabilistic analysis of
algorithms (and review of relevant probability theory concepts)

2 Large deviation bounds: Chernoff and Hoeffding bounds

3 The probabilistic method

4 Martingale (in discrete space)

5 Theory of statistical learning, PAC learning, VC-dimension

6 Monte Carlo methods

7 Convergence of Monte Carlo Markov Chains

8 ...

This course emphasize rigorous mathematical approach,
mathematical proofs, and analysis.

Course Details

• Pre-requisite: Discrete probability theory (first three chapters
in the course textbook); mathematical maturity; interest in
theory of algorithms

• Course textbook:

• Follow: Ed-discussion, Canvas, and the course website:
https://cs.brown.edu/courses/csci1550/

Course Work and Grading:

For 1550 credit: 80% homework assignments, 20% projects
reviews.

For 1550 credit as a capstone course: 60% homework assignments,
30% project, 10% projects reviews.

For 2540 credit: 40% homework assignments, 50% project, 10%
projects reviews.

Homework Assignments:

• 4-5 assignments (problem sets) - graded for mathematical
corrections and mathematical style.

• All but the last problem set can be submitted by groups of 1-3
students. Each group submits one write-up and all members
of the group will receive the same grade on that assignment.

• Deadlines:
• Assignments submitted by their deadline will be graded and

returned with corrections.
• Assignments submitted after their deadline will be graded but

not retuned with corrections.
• No assignment will be accepted after the last class.

Homework Assignments (cont.):

Assignments collaboration policy:

• You may not discuss the problems with students outside your
group.

• The last problem set must be done individually with no
discussion and/or collaboration with other students.

• In preparing the assignments you are allowed to use the
textbook, the course’s slides, the discussions on the course’s
Ed-discussion and with the TA’s. Any other source must be
disclosed in the submission.

Some of the homework assignments are challenging! You’re
not expected to solve all problems, but you’re expected to
try!

Project:

• Submit a 6-8 page research project (with possible appendices)
on any application of probabilistic method in CS.

• 15-minute presentation on your project in class.

• A project can be done by 1 or 2 students. Two students who
submit a joint project will receive the same grade on their
project.

• Students who choose to prepare projects will interact with the
instructor and the TA’s on preparing their project throughout
the course.

• Project reviews: Depending on the total number of projects,
you will be asked to submit short reviews for all, or some of
the projects.

• If you plan to submit a project: (1) let the HTA know by Feb.
15; (2) Submit a title and one paragraph plan by Feb. 29.

We treat you as adults...

• You don’t need to attend class - but you cannot ask the
instructor/TA’s to repeat information given in class.

• HW-0, not graded. Do your own evaluation! DON’T take this
course if you don’t enjoy HW-0 type exercises

• Don’t postpone the HW assignments to the last day - you
cannot do it in one evening!

• The TA’s will not do your HW assignments!
• Make good use of course’s resources:

• Course’s slides
• book
• TA’s hours
• Ed-Discussion

Questions?

Verifying Matrix Multiplication

Given three n × n matrices A, B, and C in a Boolean field, we
want to verify

AB = C.

Standard method: Matrix multiplication - takes Θ(n3) (Θ(n2.37))
operations (multiplications).

Verifying Matrix Multiplication

Randomized algorithm (takes Θ(n2) multiplications):

1 Chooses a random vector r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n.
2 Compute Br̄ ;

3 Compute A(Br̄);

4 Computes Cr̄ ;

5 If A(Br̄) ̸= Cr̄ return AB ̸= C, else return AB = C.

Theorem

If AB ̸= C, and r̄ is chosen uniformly at random from {0, 1}n, then

Pr(ABr̄ = Cr̄) ≤ 1

2
.

If AB = C the algorithm is always correct. If AB ̸= C, the
algorithm gives the correct answer with probability ≥ 1/2

Probability Space

Probability is always with respect to a probability space!

What is the probability that the sun will rise tomorrow?
Pierre-Simon de Laplace - 1749–1827.

Definition

A probability space has three components:

1 A sample space Ω, which is the set of all possible outcomes
of the random process modeled by the probability space;

2 A family of sets F representing the allowable events, where
each set in F is a subset of the sample space Ω;

3 A probability function Pr : F → [0, 1] defining a measure.

In a discrete probability an element of Ω is a simple event, and
F = 2Ω.

Probability Function

Definition

A probability function is any function Pr : F → R that satisfies
the following conditions:

1 For any event E , 0 ≤ Pr(E) ≤ 1;

2 Pr(Ω) = 1;

3 For any finite or countably infinite sequence of pairwise
mutually disjoint events E1,E2,E3, . . .

Pr

⋃
i≥1

Ei

 =
∑
i≥1

Pr(Ei).

In discrete sample space, the probability of an event is the sum of
the probabilities of its simple events.

Lemma

Choosing r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n uniformly at random is
equivalent to choosing each ri independently and uniformly from
{0, 1}.

Proof.

If each ri is chosen independently and uniformly at random, each
of the 2n possible vectors r̄ is chosen with probability 2−n, giving
the lemma.

Proof:

Assume D = AB− C ̸= 0.
ABr̄ = Cr̄ implies that Dr̄ = 0.
Since D ̸= 0 it has some non-zero entry; assume d11.
For Dr̄ = 0, it must be the case that

n∑
j=1

d1j rj = 0,

or equivalently

r1 = −
∑n

j=2 d1j rj

d11
. (1)

Here we use d11 ̸= 0.

Principle of Deferred Decision

Assume that we fixed r2, . . . , rn.
The RHS is already determined, the only variable is r1.

r1 = −
∑n

j=2 d1j rj

d11
. (2)

Probability that r1 = RHS is no more than 1/2. (= 1/2 in the
Boolean field.)

Theorem

If AB ̸= C, and r̄ is chosen uniformly at random from {0, 1}n, then

Pr(ABr̄ = Cr̄) ≤ 1

2
.

≤ 1/2 because it must hold on all non-zero rows of D.

More formally, summing over all collections of values
(x2, x3, x4, . . . , xn) ∈ {0, 1}n−1, we have

Pr(ABr̄ = Cr̄)

=
∑

(x2,...,xn)∈{0,1}n−1

Pr (ABr̄ = Cr̄ | (r2, . . . , rn) = (x2, . . . , xn))

·Pr ((r2, . . . , rn) = (x2, . . . , xn))

=
∑

(x2,...,xn)∈{0,1}n−1

Pr ((ABr̄ = Cr̄) ∩ ((r2, . . . , rn) = (x2, . . . , xn)))

≤
∑

(x2,...,xn)∈{0,1}n−1

Pr

((
r1 = −

∑n
j=2 d1j rj

d11

)
∩ ((r2, . . . , rn) = (x2, . . . , xn))

)

=
∑

(x2,...,xn)∈{0,1}n−1

Pr

(
r1 = −

∑n
j=2 d1j rj

d11

)
· Pr ((r2, . . . , rn) = (x2, . . . , xn))

≤
∑

(x2,...,xn)∈{0,1}n−1

1

2
Pr((r2, . . . , rn) = (x2, . . . , xn))

=
1

2
.

Smaller Error Probability

The test has a one side error, repeated tests are independent.

• Run the test k times.

• Accept AB = C if it passed all k tests.

Theorem

The probability of making a mistake is ≤ (1/2)k .

Independent Events

Definition

Two events E and F are independent if and only if

Pr(E ∩ F) = Pr(E) · Pr(F).

More generally, events E1,E2, . . .Ek are mutually independent if
and only if for any subset I ⊆ [1, k],

Pr

(⋂
i∈I

Ei

)
=

∏
i∈I

Pr(Ei).

If E and F are independent then the probability of E does not
depend on F .

Pr(E | F) = Pr(E ∩ F)

Pr(F)
=

Pr(E) · Pr(F)
Pr(F)

= Pr(E)

Min-Cut

A graph G = (V ,E), V -set of vertices, E set of edges.

A Min-Cut set - A minimum set of edges that disconnects the
graph.

Min-Cut

A graph G = (V ,E), V -set of vertices, E set of edges.

A Min-Cut set - A minimum set of edges that disconnects the
graph.

Fundamental computation problem in transportation, network
reliability, arbitrage, ...

Has a deterministic polynomial time solution.

Any ideas?

Min-Cut

A graph G = (V ,E), V -set of vertices, E set of edges.

A Min-Cut set - A minimum set of edges that disconnects the
graph.

Fundamental computation problem in transportation, network
reliability, arbitrage, ...

Has a deterministic polynomial time solution.

Algorithm: Run a max flow algorithm (O(|V |2) or O(|V | · |E |)
complexity) between all pairs of nodes (

(|V |
2

)
).

Instead, we present and analyze a simple randomized algorithm
with better run-time.

Min-Cut Algorithm

Input: An n-node graph G .
Output: A minimal set of edges that disconnects the graph.

1 Repeat n − 2 times:
1 Pick an edge uniformly at random.
2 Contract the two vertices connected by that edge, eliminate all

edges connecting the two vertices.

2 Output the set of edges connecting the two remaining vertices.

How good is this algorithm?

Does it always give a correct result?

Min-Cut Algorithm

Input: An n-node graph G .
Output: A minimal set of edges that disconnects the graph.

1 Repeat n − 2 times:
1 Pick an edge uniformly at random.
2 Contract the two vertices connected by that edge, eliminate all

edges connecting the two vertices.

2 Output the set of edges connecting the two remaining vertices.

Theorem

1 The algorithm outputs a min-cut edge-set with probability
≥ 2

n(n−1) .

2 The smallest set output in O(n2 log n) iterations of the
algorithm gives a correct answer with probability 1− 1/n2.

Min-Cut Algorithm

Input: An n-node graph G .
Output: A minimal set of edges that disconnects the graph.

1 Repeat n − 2 times:
1 Pick an edge uniformly at random.
2 Contract the two vertices connected by that edge, eliminate all

edges connecting the two vertices.

2 Output the set of edges connecting the two remaining vertices.

Theorem

The algorithm outputs a min-cut edge-set with probability
≥ 2

n(n−1) .

Analysis of the Algorithm

Assume that the graph has a min-cut set of k edges.
We compute the probability of finding one such set C .
Pr(Alg. returns any minimal cut set) ≥ Pr(Alg. returns C)

Two parts proof:

• Deterministic analysis part:

Lemma

If no edge of C was contracted, the algorithms outputs C .

• Probabilistic analysis part:

Lemma

Pr(no edge of C is contracted) ≥ 2
n(n−1) .

Deterministic part:

Lemma (Correctness of a step)

If no edge of C was contracted, no edge of C was eliminated.

Proof.

Let X and Y be the two set of vertices cut by C .
If the contracting edge connects two vertices in X (res. Y), then
all its parallel edges also connect vertices in X (res. Y).

Corollary (Correctness of a run)

If the algorithm terminates before contracting any edge of C , the
algorithm gives a correct answer.

Lemma (One side error)

Vertex contraction does not reduce the size of the min-cut set.
Every cut set in the new graph is a cut set in the original graph.

Probabilistic Analysis:

Lemma

Pr(no edge of C is contracted) ≥ 2
n(n−1) .

What’s the probability space? It’s a product of spaces
corresponding to rounds of the loop.

The probability space at step i depends on the probability space at
step i − 1.

Conditional Probabilities

Definition

The conditional probability that event E1 occurs given that event
E2 occurs is

Pr(E1 | E2) =
Pr(E1 ∩ E2)

Pr(E2)
.

The conditional probability is only well-defined if Pr(E2) > 0.

By conditioning on E2 we restrict the sample space to the set E2.
Thus we are interested in Pr(E1 ∩ E2) “normalized” by Pr(E2).
A condition E2 defines a new sample space, with a new probability
function P(· | E2)

Let Ei = ”the edge contracted in iteration i is not in C .”
Let Fi = ∩i

j=1Ej = “no edge of C was contracted in the first i
iterations”.

Since the minimum cut-set has k edges, all vertices have degree
≥ k, and the graph has ≥ nk/2 edges.

There are at least nk/2 edges in the graph, k edges are in C .
Thus, Pr(E1) = Pr(F1) ≥ 1− 2k

nk = 1− 2
n .

Conditioning on E1, after the first vertex contraction we are left
with an n − 1 node graph, with minimum cut set, and minimum
degree ≥ k. The new graph has at least k(n − 1)/2 edges, thus
Pr(E2 | F1) ≥ 1− k

k(n−1)/2 ≥ 1− 2
n−1 .

Similarly, Pr(Ei | Fi−1) ≥ 1− k
k(n−i+1)/2 = 1− 2

n−i+1 .

How do we combine Pr(Ei | Fi−1)’s to compute Fn−1?

Useful identities:

Pr(A | B) =
Pr(A ∩ B)

Pr(B)

Pr(A ∩ B) = Pr(A | B)Pr(B)

Pr(A ∩ B ∩ C) = Pr(A | B ∩ C)Pr(B ∩ C)

= Pr(A | B ∩ C)Pr(B | C)Pr(C)

Let E1,,En be a sequence of events. Let Fi =
⋂i

j=1 Ei

Pr(Fn) = Pr(En | Fn−1)Pr(Fn−1) =

Pr(En | Fn−1)Pr(En−1 | Fn−2)....P(E2 | F1)Pr(F1)

We need to compute

Pr(Fn−2) = Pr(∩n−2
j=1 Ej)

We have

Pr(E1) = Pr(F1) ≥ 1− 2k

nk
= 1− 2

n
and

Pr(Ei | Fi−1) ≥ 1− k

k(n − i + 1)/2
= 1− 2

n − i + 1
.

Pr(Fn−2) = Pr(En−2 ∩ Fn−3) = Pr(En−2 | Fn−3)Pr(Fn−3) =

Pr(En−2 | Fn−3)Pr(En−3 | Fn−4)....Pr(E2 | F1)Pr(F1) =

Pr(F1)
n−2∏
j=2

Pr(Ej | Fj−1)

The probability that the algorithm computes the minimum cut-set
is

Pr(Fn−2) = Pr(∩n−2
j=1 Ej) = Pr(F1)

n−2∏
j=2

Pr(Ej | Fj−1)

≥ Πn−2
i=1

(
1− 2

n − i + 1

)
= Πn−2

i=1

(
n − i − 1

n − i + 1

)

=

(
n − 2

n

)(
n − 3

n − 1

)(
n − 4

n − 2

)
. . .

2

n(n − 1)
.

Theorem

The algorithm outputs a min-cut edge-set with probability
≥ 2

n(n−1) .

Theorem

Assume that we run the randomized min-cut algorithm
n(n − 1) log n times and output the minimum size cut-set found in
all the iterations. The probability that the output is not a min-cut
set is bounded by 1

n2
.

Proof.

The algorithm has a one side error: the output is never smaller
than the min-cut value.
The probability that C is not the output of any of the
n(n − 1) log n runs is (using independence)

≤
(
1− 2

n(n − 1)

)n(n−1) log n

≤ e−2 log n =
1

n2
.

(
1− 2

n(n − 1)

)n(n−1) log n

≤ e−2 log n =
1

n2
.

The Taylor series expansion of e−x gives

e−x = 1− x +
x2

2!
−

Thus, for x < 1,

1− x ≤ e−x .

Theorem

1 The algorithm outputs a min-cut edge set with probability
≥ 2

n(n−1) .

2 The smallet output in O(n2 log n) iterations of the algorithm
gives a correct answer with probability 1− 1/n2.

