Chapter 14.1: Sample Complexity - Statistical Learning Theory
We want to estimate the working temperature range of an iPhone.

- We could study the physics and chemistry that affect the performance of the phone – too hard
- We could sample temperatures in [-100C, +100C] and check if the iPhone works in each of these temperatures
- We could sample users’ iPhones for failures/temperature

How many samples do we need?
How good is the result?
Learning an Interval From Examples

- Our domain is \([A, B] \subset (-\infty, +\infty)\). There is an unknown distribution \(D\) on \([A, B]\).
- There is an unknown classification of the domain to an interval of points in class \(\text{In}\), the rest are in class \(\text{Out}\).
- We get \(n\) random training (labeled) examples from the distribution \(D\).
- We choose a rule \(r = [a, b]\) based on the examples.
- We use this rule to decide on an unlabeled point drawn from \(D\).
- Let \(r^* = [c, d]\) be the correct rule.
- Let \(\Delta(r, r^*) = ([a, b] - [c, d]) \cup ([c, d] - [a, b])\).
- We are wrong only on examples in \(\Delta(r, r^*)\).
What’s the probability that we are wrong?

- If we select r, we are wrong only on examples in $\Delta(r, r^*)$.
- The probability that we are wrong is $Pr(\Delta(r, r^*))$.
- If $Prob(\Delta(r, r^*)) \leq \epsilon$ we don’t care.
- We bound $Prob(\text{select } r \text{ such that } Pr(\Delta(r, r^*) \geq \epsilon))$ as a function of the size of the training set.

Two probabilities:

1. ϵ - the probability that our rule gives a wrong answer.
2. δ - the probability that are sample is sufficiently good to generate such a rule.
Learning an Interval

• If the classification error is \(\geq \varepsilon \) then the sample missed at least one of the intervals \([a, a']\) or \([b', b]\) each of probability \(\geq \varepsilon/2 \)

Each sample excludes many possible intervals.
The union bound sums over overlapping hypothesis.
Need better characterization of concept's complexity!
Theorem

There is a learning algorithm that given a sample from \mathcal{D} of size $m = \frac{2}{\epsilon} \ln \frac{2}{\delta}$, with probability $1 - \delta$, returns a classification rule (interval) $[x, y]$ that is correct with probability $1 - \epsilon$.

Proof.

Algorithm: Choose the smallest interval $[x, y]$ that includes all the "In" sample points.

- Clearly $a \leq x < y \leq b$, and the algorithm can only err in classifying "In" points as "Out" points.
- Fix $a < a'$ and $b' < b$ such that $Pr([a, a']) = \epsilon/2$ and $Pr([b, b']) = \epsilon/2$.
- If the probability of error when using the classification $[x, y]$ is $\geq \epsilon$ then either $a' \leq x$ or $y \leq b'$ or both.
- The probability that the sample of size $m = \frac{2}{\epsilon} \ln \frac{2}{\delta}$ did not intersect with one of these intervals is bounded by

$$2(1 - \frac{\epsilon}{2})^m \leq e^{-\frac{\epsilon m}{2} + \ln 2} = e^{-\frac{\epsilon}{2} \frac{2}{\epsilon} \ln \frac{2}{\delta} + \ln 2} = \delta$$
Learning a Binary Classifier

- An unknown probability distribution \mathcal{D} on a domain \mathcal{U}
- An unknown correct classification – a partition c of \mathcal{U} to In and Out sets
- Input:
 - Concept class \mathcal{C} – a collection of possible classification rules (partitions of \mathcal{U}).
 - A training set $\{(x_i, c(x_i)) \mid i = 1, \ldots, m\}$, where x_1, \ldots, x_m are sampled from \mathcal{D}.
- Goal: With probability $1 - \delta$ the algorithm generates a good classifier.
- A classifier is good if the probability that it errs on an item generated from \mathcal{D} is $\leq \text{opt}(\mathcal{C}) + \epsilon$, where $\text{opt}(\mathcal{C})$ is the error probability of the best classifier in \mathcal{C}.
- Realizable case: $c \in \mathcal{C}$, $\text{Opt}(\mathcal{C}) = 0$.
- Unrealizable case: $c \notin \mathcal{C}$, $\text{Opt}(\mathcal{C}) > 0$.
Learning a Binary Classifier

- **Out** and **In** items, and a concept class C of possible classification rules
When does the sample specify a *good* rule?
The realizable case

- The realizable case - the correct classification $c \in C$.
- For any $h \in C$ let $\Delta(c, h)$ be the set of items on which the two classifiers differ: $\Delta(c, h) = \{x \in U \mid h(x) \neq c(x)\}$
- Algorithm: choose $h^* \in C$ that agrees with all the training set (there must be at least one).
- If the sample (training set) intersects every set in

 $$\{\Delta(c, h) \mid Pr(\Delta(c, h)) \geq \epsilon\},$$

 then

 $$Pr(\Delta(c, h^*)) \leq \epsilon.$$
Learning a Binary Classifier

- **Red** and **blue** items, possible classification rules, and the sample items

![Diagram of red and blue items with classification rules](image)
When does the sample identify a **good** rule?

The unrealizable (agnostic) case

- The unrealizable case - *c* may not be in *C*.
- For any *h* ∈ *C*, let \(\Delta(c, h) \) be the set of items on which the two classifiers differ: \(\Delta(c, h) = \{ x \in U \mid h(x) \neq c(x) \} \)
- For the training set \(\{(x_i, c(x_i)) \mid i = 1, \ldots, m\} \), let

\[
\tilde{Pr}(\Delta(c, h)) = \frac{1}{m} \sum_{i=1}^{m} 1_{h(x_i) \neq c(x_i)}
\]

- Algorithm: choose \(h^* = \arg\min_{h \in C} \tilde{Pr}(\Delta(c, h)) \).
- If for every set \(\Delta(c, h) \),

\[
|Pr(\Delta(c, h)) - \tilde{Pr}(\Delta(c, h))| \leq \epsilon,
\]

then

\[
Pr(\Delta(c, h^*)) \leq opt(C) + 2\epsilon.
\]

where \(opt(C) \) is the error probability of the best classifier in *C*.
If for every set $\Delta(c, h)$,

$$|Pr(\Delta(c, h)) - \tilde{Pr}(\Delta(c, h))| \leq \epsilon,$$

then

$$Pr(\Delta(c, h^*)) \leq opt(C) + 2\epsilon.$$

where $opt(C)$ is the error probability of the best classifier in C. Let \tilde{h} be the best classifier in C. Since the algorithm chose h^*,

$$\tilde{Pr}(\Delta(c, h^*)) \leq \tilde{Pr}(\Delta(c, \tilde{h})).$$

Thus,

$$Pr(\Delta(c, h^*)) - opt(C) \leq \tilde{Pr}(\Delta(c, h^*)) - opt(C) + \epsilon \\ \leq \tilde{Pr}(\Delta(c, \tilde{h})) - opt(C) + \epsilon \leq 2\epsilon$$
Detection vs. Estimation

- **Input:**
 - Concept class C – a collection of possible classification rules (partitions of U).
 - A training set $\{(x_i, c(x_i)) \mid i = 1, \ldots, m\}$, where x_1, \ldots, x_m are sampled from \mathcal{D}.
 - For any $h \in C$, let $\Delta(c, h)$ be the set of items on which the two classifiers differ: $\Delta(c, h) = \{x \in U \mid h(x) \neq c(x)\}$
 - For the realizable case we need a training set (sample) that with probability $1 - \delta$ intersects every set in
 $$\{\Delta(c, h) \mid Pr(\Delta(c, h)) \geq \epsilon\} \quad (\epsilon\text{-net})$$
 - For the unrealizable case we need a training set that with probability $1 - \delta$ estimates, within additive error ϵ, every set in
 $$\Delta(c, h) = \{x \in U \mid h(x) \neq c(x)\} \quad (\epsilon\text{-sample}).$$
Given a collection R of sets in a universe X, under what conditions a finite sample N from an arbitrary distribution \mathcal{D} over X, satisfies with probability $1 - \delta$,

1. \[\forall r \in R, \quad \Pr_{\mathcal{D}}(r) \geq \epsilon \Rightarrow r \cap N \neq \emptyset \quad (\epsilon\text{-net}) \]

2. for any $r \in R$,

\[\left| \Pr_{\mathcal{D}}(r) - \frac{|N \cap r|}{|N|} \right| \leq \epsilon \quad (\epsilon\text{-sample}) \]
Learnability - Uniform Convergence

Theorem

In the realizable case, any concept class C can be learned with $m = \frac{1}{\varepsilon}(\ln |C| + \ln \frac{1}{\delta})$ samples.

Proof.

We need a sample that intersects every set in the family of sets

$$\{\Delta(c, c') \mid Pr(\Delta(c, c')) \geq \varepsilon\}.$$

There are at most $|C|$ such sets, and the probability that a sample is chosen inside a set is $\geq \varepsilon$.

The probability that m random samples did not intersect with at least one of the sets is bounded by

$$|C|(1 - \varepsilon)^m \leq |C|e^{-\varepsilon m} \leq |C|e^{-(\ln |C| + \ln \frac{1}{\delta})} \leq \delta.$$
How Good is this Bound?

• Assume that we want to estimate the working temperature range of an iPhone.
• We sample temperatures in [-100C,+100C] and check if the iPhone works in each of these temperatures.
Learning an Interval

- A distribution \mathcal{D} is defined on universe that is an interval $[A, B]$.
- The true classification rule is defined by a sub-interval $[a, b] \subseteq [A, B]$.
- The concept class C is the collection of all intervals,

$$C = \{ [c, d] \mid [c, d] \subseteq [A, B] \}$$

Theorem

There is a learning algorithm that given a sample from \mathcal{D} of size $m = \frac{2}{\epsilon} \ln \frac{2}{\delta}$, with probability $1 - \delta$, returns a classification rule (interval) $[x, y]$ that is correct with probability $1 - \epsilon$.

Note that the sample size is independent of the size of the concept class $|C|$, which is infinite.
• The union bound is far too loose for our applications. It sums over overlapping hypothesis.
• Each sample excludes many possible intervals.
• Need better characterization of concept’s complexity!
Probably Approximately Correct Learning (PAC Learning)

- The goal is to learn a concept (hypothesis) from a pre-defined concept class. (An interval, a rectangle, a k-CNF boolean formula, etc.)
- There is an unknown distribution D on input instances.
- Correctness of the algorithm is measured with respect to the distribution D.
- The goal: a polynomial time (and number of samples) algorithm that with probability $1 - \delta$ computes an hypothesis of the target concept that is correct (on each instance) with probability $1 - \epsilon$.
Formal Definition

- We have a unit cost function $\text{Oracle}(c, D)$ that produces a pair $(x, c(x))$, where x is distributed according to D, and $c(x)$ is the value of the concept c at x. Successive calls are independent.

- A concept class \mathcal{C} over input set X is PAC learnable if there is an algorithm L with the following properties: For every concept $c \in \mathcal{C}$, every distribution D on X, and every $0 \leq \epsilon, \delta \leq 1/2$,
 - Given a function $\text{Oracle}(c, D)$, ϵ and δ, with probability $1 - \delta$ the algorithm output an hypothesis $h \in \mathcal{C}$ such that $Pr_D(h(x) \neq c(x)) \leq \epsilon$.
 - The concept class \mathcal{C} is efficiently PAC learnable if the algorithm runs in time polynomial in the size of the problem, $1/\epsilon$ and $1/\delta$.

So far we showed that the concept class ”intervals on the line” is efficiently PAC learnable.
Learning Boolean Conjunctions

- A Boolean literal is either x or \overline{x}.
- A conjunction is $x_i \land x_j \land \overline{x_k}$...
- $C = \ldots$ is the set of conjunctions of up to $2n$ literals.
- The input space is $\{0, 1\}^n$
- $c \in C$ is the correct formula.

Theorem

The class of conjunctions of Boolean literals is efficiently PAC learnable.
Proof

- Start with the hypothesis \(h = x_1 \land \bar{x}_1 \land \ldots x_n \land \bar{x}_n \).
- Ignore negative examples generated by \(\text{Oracle}(c, D) \).
- For a positive example \((a_1, \ldots, a_n)\), if \(a_i = 1 \) remove \(\bar{x}_i \), otherwise remove \(x_i \) from \(h \).

Lemma

At any step of the algorithm the current hypothesis never errs on negative example. It may err on positive examples by not removing enough literals from \(h \).

Proof.

Initially the hypothesis has no satisfying assignment. It has a satisfying assignment only when no literal and its complement are left in the hypothesis. A literal is removed when it contradicts a positive example and thus cannot be in \(c \). Literals of \(c \) are never removed. A negative example must contradict a literal in \(c \), thus is not satisfied by \(h \).
Analysis

• The learned hypothesis h can only err by rejecting a positive examples. (it rejects an input unless it had a similar positive example in the training set.)

• If h errs on a positive example then in has a literal that is not in c.

• Let z be a literal in h and not c. Let

$$p(z) = Pr_{a \sim D}(c(a) = 1 \text{ and } z = 0 \text{ in } a).$$

• A literal z is “bad” if $p(z) > \frac{\epsilon}{2n}$.

• Let $m \geq \frac{2n}{\epsilon} \ln(2n) + \ln \frac{1}{\delta}$. The probability that after m samples there is any bad literal in the hypothesis is bounded by

$$2n(1 - \frac{\epsilon}{2n})^m \leq \delta.$$
Two fundamental questions:

- What concept classes are PAC-learnable with a given number of training (random) examples?
- What concept class are efficiently learnable (in polynomial time)?

A complete (and beautiful) characterization for the first question, not very satisfying answer for the second one.

Some Examples:

- **Efficiently PAC learnable**: Interval in \mathbb{R}, rectangular in \mathbb{R}^2, disjunction of up to n variables, 3-CNF formula,...

- **PAC learnable, but not in polynomial time (unless $P = NP$)**: DNF formula, finite automata, ...

- **Not PAC learnable**: Convex body in \mathbb{R}^2, $\{\sin(hx) \mid 0 \leq h \leq \pi\}$, ...