Chapter 13.2: Martingale’s Large Deviation Bound
Martingales

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A sequence of random variables Z_0, Z_1, \ldots is a martingale with respect to the sequence X_0, X_1, \ldots if for all $n \geq 0$ the following hold:</td>
</tr>
<tr>
<td>1. Z_n is a function of X_0, X_1, \ldots, X_n;</td>
</tr>
<tr>
<td>2. $E[</td>
</tr>
<tr>
<td>3. $E[Z_{n+1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A sequence of random variables Z_0, Z_1, \ldots is a martingale when it is a martingale with respect to itself, that is</td>
</tr>
<tr>
<td>1. $E[</td>
</tr>
<tr>
<td>2. $E[Z_{n+1}</td>
</tr>
</tbody>
</table>
Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots then (if T is finite),

$$E[Z_T] = E[Z_0]$$

whenever one of the following holds:

1. there is a constant c such that, for all i, $|Z_i| \leq c$;
2. T is bounded;
3. $E[T] < \infty$, and there is a constant c such that $E[|Z_{i+1} - Z_i| |X_1, \ldots, X_i] < c$.
Examples:

1. Two stages game:
 1. Roll one die; let X be the outcome;
 2. Roll X standard dice; your gain Z is the sum of the outcomes of the X dice.

 What is your expected gain?

2. A couple expects to have X children, $X \sim G(p)$. They expect each of the children to have a number of children distributed $G(r)$.

 What is their expected number of grandchildren?
Wald’s Equation

Theorem

Let X_1, X_2, \ldots be nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectations, then

$$E \left[\sum_{i=1}^{T} X_i \right] = E[T] E[X] .$$

Note that T is not independent of X_1, X_2, \ldots. Corollary of the martingale stopping theorem.
Proof

For \(i \geq 1 \), let \(Z_i = \sum_{j=1}^{i} (X_j - E[X]) \).

The sequence \(Z_1, Z_2, \ldots \) is a martingale with respect to \(X_1, X_2, \ldots \).

1. \(Z_i \) is determined by \(X_1, \ldots, X_i \)
2. \(E[|Z_i|] = E[|\sum_{j=1}^{i} (X_j - E[X])|] \leq 2iE[|X|] \)
3. \(E[Z_{i+1} - Z_i \mid X_0, X_1, \ldots, X_i] = E[X_{i+1} - E[X]] = 0 \)

\(E[Z_1] = 0 \), \(E[T] < \infty \), and

\[
E[|Z_{i+1} - Z_i| \mid X_1, \ldots, X_i] = E[|X_{i+1} - E[X]|] \leq 2E[X].
\]

We can apply the martingale stopping theorem to compute

\[
E[Z_T] = E[Z_1] = 0.
\]
We can apply the martingale stopping theorem to compute

\[E[Z_T] = E[Z_1] = 0. \]

\[
0 = E[Z_T] = E \left[\sum_{j=1}^{T} (X_j - E[X]) \right] = E \left[\sum_{j=1}^{T} X_j - T E[X] \right] = E \left[\sum_{j=1}^{T} X_j \right] - E[T] \cdot E[X] = 0,
\]
Examples

Two stages game:

1. roll one die; let X be the outcome;
2. roll X standard dice; your gain Z is the sum of the outcomes of the X dice.

What is your expected gain?

$Y_i =$ outcome of ith die in second stage.

$$E[Z] = E \left[\sum_{i=1}^{X} Y_i \right].$$

X is a stopping time for $Y_1, Y_2, \ldots.$

By Wald’s equation:

$$E[Z] = E[X]E[Y_i] = \left(\frac{7}{2} \right)^2.$$
A couple expect to have X children, $X \sim G(p)$. They expect each of their children to have a number of children distributed $G(r)$. What is their expected number of grandchildren?

$$\frac{1}{p} \cdot \frac{1}{r}$$
Example: a k-run

We flip a coin with probability p for head, $q = (1 - p)$ for tail, until we get a consecutive sequence of k heads. What’s the expected number of times we flip the coin?

- A **switch** is a head followed by a tail.
- A **segment** is a sequence of flips till the first switch or consecutive sequence of k heads.

- Let X_i be the number of flips in the i segment.
- Let T be the first i with k heads.
- Expected number of flips till (including) the first head - $\sum_{j \geq 1} jq^{j-1} p$.
- Expected number of following flips till a switch before $k - 2$ flips - $\sum_{j=1}^{k-2} jp^{j-1} q$

$$E[X_i] = \sum_{j \geq 1} jq^{j-1} p + \sum_{j=1}^{k-2} jp^{j-1} q + (k - 1) p^{(k-2)}$$
• Let X_i be the number of flips in the i segment.

$$E[X_i] = \sum_{j \geq 1} jq^{j-1}p + \sum_{j=1}^{k-2} j p^{j-1}q + (k - 1)p^{k-2}$$

• Let T be the first i with k heads.

• The probability that a segment ends with k heads is p^{k-1} ($k - 1$ heads following the first head).

$$E[T] = p^{-(k-1)}$$

• The expected number of coin flips is $E[X_i]E[T] \leq \left(\frac{1}{p} + \frac{1}{q}\right)\frac{1}{p^{k-1}}$
Hoeffding’s Bound

Theorem

Let X_1, \ldots, X_n be **independent** random variables with $E[X_i] = \mu_i$ and $\Pr(B_i \leq X_i \leq B_i + c_i) = 1$, then

\[
\Pr\left(\left|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i\right| \geq \epsilon\right) \leq 2e^{-\frac{2\epsilon^2}{\sum_{i=1}^{n} c_i^2}}
\]

Do we need independence?
Tail Inequalities

Theorem (Azuma-Hoeffding Inequality)

Let Z_0, Z_1, \ldots, Z_n be a martingale (with respect to X_1, X_2, \ldots) such that $|Z_k - Z_{k-1}| \leq c_k$. Then, for all $t \geq 0$ and any $\lambda > 0$,

$$
\Pr(|Z_t - Z_0| \geq \lambda) \leq 2e^{-\lambda^2/(2 \sum_{k=1}^{t} c_k^2)} .
$$

The following corollary is often easier to apply.

Corollary

Let X_0, X_1, \ldots be a martingale such that for all $k \geq 1$,

$$
|X_k - X_{k-1}| \leq c .
$$

Then for all $t \geq 1$ and $\lambda > 0$,

$$
\Pr(|X_t - X_0| \geq \lambda c \sqrt{t}) \leq 2e^{-\lambda^2/2} .
$$
Assume that you play a sequence of \(n \) fair games, where the bet \(b_i \leq B \) in game \(i \) depends on the outcome of previous games.

Let \(Z_n \) be the accumulated gain/loss after the \(n \)-th game.

We know that \(E[Z_n] = 0 \). We’ll prove:

\[
\Pr(\left|Z_n\right| \geq \lambda) \leq 2e^{-2\lambda^2/nB^2}
\]
Theorem (Azuma-Hoeffding Inequality)

Let Z_0, Z_1, \ldots, be a martingale with respect to X_0, X_1, X_2, \ldots, such that

$$B_k \leq Z_k - Z_{k-1} \leq B_k + c_k,$$

for some constants c_k and for some random variables B_k that may be functions of $X_0, X_1, \ldots, X_{k-1}$. Then, for any $t \geq 0$ and $\lambda > 0$,

$$\Pr(|Z_t - Z_0| \geq \lambda) \leq 2e^{-2\lambda^2/(\sum_{k=1}^{t} c_k^2)}.$$
Proof

Let \(X^k = X_0, \ldots, X_k \) and \(Y_i = Z_i - Z_{i-1} \).

Since \(\mathbb{E}[Z_i \mid X^{i-1}] = Z_{i-1} \),
\[
\mathbb{E}[Y_i \mid X^{i-1}] = \mathbb{E}[Z_i - Z_{i-1} \mid X^{i-1}] = 0.
\]

Since \(\Pr(B_i \leq Y_i \leq B_i + c_i \mid X^{i-1}) = 1 \), by Hoeffding’s Lemma:
\[
\mathbb{E}[e^{\beta Y_i} \mid X^{i-1}] \leq e^{\beta^2 c_i^2 / 8}.
\]

Lemma

(Hoeffding’s Lemma) Let \(X \) be a random variable such that \(\Pr(X \in [a, b]) = 1 \) and \(\mathbb{E}[X] = 0 \). Then for every \(\lambda > 0 \),
\[
\mathbb{E}[e^{\lambda X}] \leq e^{\lambda^2 (a-b)^2 / 8}.
\]
Proof of the Lemma

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that $\Pr(X \in [a, b]) = 1$ and $E[X] = 0$. Then for every $\lambda > 0$,

$$E[e^{\lambda X}] \leq e^{\lambda^2(a-b)^2/8}.$$

Since $f(x) = e^{\lambda x}$ is a convex function, for any $\alpha \in (0, 1)$ and $x \in [a, b]$,

$$f(X) \leq \alpha f(a) + (1 - \alpha)f(b).$$

Thus, for $\alpha = \frac{b-x}{b-a} \in (0, 1)$,

$$e^{\lambda x} \leq \frac{b-x}{b-a}e^{\lambda a} + \frac{x-a}{b-a}e^{\lambda b}.$$

Taking expectation, and using $E[X] = 0$, we have

$$E\left[e^{\lambda X}\right] \leq \frac{b}{b-a}e^{\lambda a} - \frac{a}{b-a}e^{\lambda b} \leq e^{\lambda^2(b-a)^2/8}.$$
Proof of Azuma-Hoeffding Inequality

\[E \left[e^{\beta Y_i} \mid X^{i-1} \right] \leq e^{\beta^2 c_i^2 / 8}. \]

\[
E_X^n \left[e^{\beta \sum_{i=1}^n Y_i} \right] = E_X^{n-1} \left[E_X^n \left[e^{\beta \sum_{i=1}^n Y_i} \mid X^{n-1} \right] \right]
\]

\[
= E_X^{n-1} \left[e^{\beta \sum_{i=1}^{n-1} Y_i} E_X^n \left[e^{\beta Y_n} \mid X^{n-1} \right] \right]
\]

\[
\leq e^{\beta^2 c_n^2 / 8} E_X^{n-1} \left[e^{\beta \sum_{i=1}^{n-1} Y_i} \right] \]

\[
\leq e^{\beta^2 \sum_{i=1}^n c_i^2 / 8}
\]

In the second inequality we use the fact that \(X^{n-1}\) determines the values of \(Y_1, \ldots, Y_{n-1}\)
\[Y_i = Z_i - Z_{i-1} \text{ and } E[e^{\beta \sum_{i=1}^{n} Y_i}] \leq e^{\beta^2 \sum_{i=1}^{n} c_i^2 / 8} \]

\[
\Pr(Z_t - Z_0 \geq \lambda) = \Pr \left(\sum_{i=1}^{t} Y_i \geq \lambda \right) \leq \frac{E[e^{\beta \sum_{i=1}^{t} Y_i}]}{e^{\beta \lambda}} \leq e^{-\lambda \beta} e^{\beta^2 \sum_{i=1}^{t} c_i^2 / 8} \]

For \(\beta = \frac{4\lambda}{\sum_{i=1}^{t} c_i^2} \) we get:

\[
\Pr(|Z_t - Z_0| \geq \lambda) \leq 2e^{-2\lambda^2 / (\sum_{k=1}^{t} c_k^2)}
\]

Theorem (Azuma-Hoeffding Inequality):

Let \(Z_0, Z_1, \ldots, Z_n \) be a martingale (with respect to \(X_1, X_2, \ldots \)) such that \(|Z_k - Z_{k-1}| \leq c_k \). Then, for all \(t \geq 0 \) and any \(\lambda > 0 \),

\[
\Pr(|Z_t - Z_0| \geq \lambda) \leq 2e^{-\lambda^2 / (2 \sum_{k=1}^{t} c_k^2)}.
\]
Example

Assume that you play a sequence of n fair games, where the bet b_i in game i depends on the outcome of previous games. Let $B = \max_i b_i$. The probability of winning or losing more than λ is bounded by

$$\Pr(|Z_n| \geq \lambda) \leq 2e^{-2\lambda^2/nB^2}$$

$$\Pr(|Z_n| \geq \lambda B \sqrt{n}) \leq 2e^{-2\lambda^2}$$

$$\Pr \left(|Z_n| \geq \lambda \sqrt{\sum_{i=1}^{n} b_i^2} \right) \leq 2e^{-2\lambda^2}$$
Application: Balls and Bins

We place m balls independently and uniformly at random into n bins.

Let $X_i = 1$ if bin i is empty after all the balls were placed, otherwise $X_i = 0$.

$$E[X_i] = Pr(X_i = 1) = \left(1 - \frac{1}{n}\right)^m$$

Let $F = \sum_{i=1}^{n} X_i$ be the number of empty bins after the m balls are thrown. We know that

$$E[F] = n \left(1 - \frac{1}{n}\right)^m,$$

but the events for different bins are not independent.

Formulating the process as a (Doob) martingale we'll get

$$Pr(|F - E[F]| \geq \epsilon) \leq 2e^{-2\epsilon^2/m}$$
Let X_1, X_2, \ldots, X_n be sequence of random variables. Let $Y = f(X_1, \ldots, X_n)$ be a random variable with $E[|Y|] < \infty$.

For $i = 0, 1, \ldots, n$, let

\[
\begin{align*}
Z_0 &= E[Y] = E_{X[1,n]}[f(X_1, \ldots, X_n)] \\
Z_i &= E_{X[i+1,n]}[Y|X_1 = x_1, X_2 = x_2, \ldots, X_i = x_i] \\
Z_n &= E[Y|X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n] = f(x_1, \ldots, x_n)
\end{align*}
\]

Theorem

Z_0, Z_1, \ldots, Z_n is martingale with respect to X_1, X_2, \ldots, X_n.
Proof

\[Y = f(X_1, \ldots, X_n), \quad Z_0 = E[Y], \]
\[Z_i = E_{X[i+1,n]}[Y|X_1 = x_1, \ldots, X_i = x_i], \]

\(Z_1, Z_2, \ldots, Z_n \) is a martingale iff

(1) \(E[|Z_i|] < \infty \), and

(2) \(E_{X[i+1,n]}[Z_{i+1}|X_1 = x_1, \ldots, X_i = x_i] = Z_i. \)

(1) \(E[|Z_i|] = E[E[Y|X, \ldots, X_i]] \leq E[E[|Y||X_1, \ldots, X_i]] = E[|Y|] < \infty, \)

Jensen's Inequality: If \(f(x) \) is convex then \(f(E[X]) \leq E[f(X)]. \)

(2) \[
\begin{align*}
E_{X[i+1,n]}[Z_{i+1}|x_1, x_2, \ldots, x_i] \\
= E_{X[i+1],X[i+2,n]}[E_{X[i+2,n]}[Y|X_1, \ldots, X_{i+1}]|x_1, \ldots, x_i] \\
= E_{X[i+1,n]}[Y|x_1, x_2, \ldots, x_i] = Z_i
\end{align*}
\]

Past: \(P = x_1, \ldots, x_i \). Future: \(F = X_{i+2}, \ldots, X_n \)

\[E_{X[i+1,F]}[Z_{i+1}|P] = E_{X[i+1,F]}[E_{F}[Y|P, X_{i+1}]|P] = E_{X[i+1,n]}[Y|P] = Z_i \]
Simple Example

\[Y = f(X_1, \ldots, X_n) = \sum_{i=1}^{n} X_i, \quad X_i \text{ independent } \sim U[0, 1]. \]

\[Z_0 = E[Y] = E_{X[1,n]} f(X_1, \ldots, X_n) = E[\sum_{i=1}^{n} X_i] = n/2 \]

\[Z_i = E_{X[i+1,n]} [Y|X_1, \ldots, X_i] \]

\[= \sum_{j=1}^{i} x_j + E[\sum_{j=i}^{n} X_i] = \sum_{j=1}^{i} x_j + (n - i)/2 \]

\[Z_n = E[Y|X_1, \ldots, X_n] = f(x_1, \ldots, x_n) = \sum_{j=1}^{n} x_j \]

\[E_{X_{i+1}} [Z_{i+1}|X_1, \ldots, X_i] = E_{X_{i+1}} \left[\sum_{j=1}^{i+1} X_j + \frac{n - i - 1}{2} | x_1, \ldots, x_i \right] \]

\[= \sum_{j=1}^{i} x_j + \frac{n - i}{2} = Z_i \]
Example: Polyá’s Urn

- Start with m balls, r red, $m - r$ blue.
- Repeat n times:
 1. Pick a ball uniformly at random, check its color and return it to the urn.
 2. If red, add a new red ball, else add a new blue ball.

Let $X_i = 1$ if we add a red ball at step i, else $X_i = 0$

We want to estimate the number of new red balls among the n new balls, starting with ratio r/m

$$S_n \left(\frac{r}{m} \right) = \sum_{i=1}^{n} X_i = f(X_1, \ldots, X_n)$$

Claim: $E[S_n(\frac{r}{m})] = n \frac{r}{m}$.

On ”average” the ratio doesn’t change: $\frac{r + n \frac{r}{m}}{m + n} = \frac{r(1 + \frac{n}{m})}{m(1 + \frac{n}{m})} = \frac{r}{m}$
Example: Polya’s Urn

Start with \(M \) balls, \(R \) red, \(M - R \) blue. Repeat \(n \) times: pick a ball uniformly at random. Return it to the urn. If red add a red ball, else add a blue ball.

\[X_i = 1 \text{ if we add a red ball in step } i, \text{ else } X_i = 0. \]

\[S_n(r/m) = \sum_{i=1}^{n} X_i = f(X_1, \ldots, X_n) \]

Claim: \(E[S_n(r/m)] = n \frac{r}{m} \).

Proof: By induction on \(t \geq 0 \), that \(E[S_t] = tr/m \).

\[
E[S_{t+1} \mid S_t] = S_t + \frac{r + S_t}{m + t}
\]

\[
E[S_{t+1}] = E[E[S_{t+1} \mid S_t]] = E\left[S_t + \frac{r + S_t}{m + t} \right]
\]

\[
= t \frac{r}{m} + \frac{r + tr/m}{m + t} = t \frac{r}{m} + \frac{r(1 + t/m)}{m(1 + t/m)} = (t + 1) \frac{r}{m}
\]
Example: Polya’s Urn

\[X_i = 1 \] if added a red ball in step \(i \), else \(X_i = 0 \),

\[S_n \left(\frac{r}{m} \right) = \sum_{i=1}^{n} X_i, \text{ and } E[S_n \left(\frac{r}{m} \right)] = \frac{n}{m} \]

Let \(Z_i = E[S_n \mid X_1 = x_1, \ldots, X_i = x_i] \).

We verify that \(Z_1, \ldots, Z_n \) is a martingale (which we already know, since it’s a Doob martingale.)

Let \(r_i = r + \sum_{j=1}^{i} x_j \)

\[
Z_i = E[S_n \mid X_1 = x_1, \ldots, X_i = x_i] = \sum_{j=1}^{i} x_j + E[S_{n-i}(\frac{r + \sum_{j=1}^{i} x_j}{m + i})]
\]

\[
= \sum_{j=1}^{i} x_j + (n - i) \frac{r + \sum_{j=1}^{i} x_j}{m + i} = \sum_{j=1}^{i} x_j + (n - i) \frac{r_i}{m + i}
\]
\[
\begin{align*}
 r_i &= r + \sum_{j=1}^{i} x_j \\
 Z_i &= E[S_n \mid X_1 = x_1, \ldots, X_i = x_i] = \sum_{j=1}^{i} x_j + (n - i) \frac{r_i}{m+i}.
\end{align*}
\]

\[
E[Z_{i+1} \mid X_1, \ldots, X_i] = E[E[S_n \mid X_1, X_2, \ldots, X_{i+1}] \mid X_1 = x_1, \ldots, X_i = x_i] = \sum_{j=1}^{i} x_j + \frac{r_i}{m+i} + (n - i - 1) \frac{r_i}{m+i + 1}
\]

\[
= \sum_{j=1}^{i} x_j + \frac{r_i}{m+i} + (n - i - 1) \frac{r_i(1 + \frac{1}{m+i})}{m+i + 1}
\]

\[
= \sum_{j=1}^{i} x_j + \frac{r_i}{m+i} + (n - i - 1) \frac{r_i}{m+i} = Z_i
\]
Tail Inequalities: Doob Martingales

Let X_1, \ldots, X_n be sequence of random variables.

Random variable Y:
- $Y = f(X_1, X_2, \ldots, X_n)$ is a function of X_1, X_2, \ldots, X_n;
- $E[|Y|] < \infty$.

Let $Z_i = E[Y|X_1, \ldots, X_i], i = 0, 1, \ldots, n$.

Z_0, Z_1, \ldots, Z_n is martingale with respect to X_1, \ldots, X_n.

If we can use Azuma-Hoeffding inequality:

$$\Pr(|Z_n - Z_0| \geq \lambda) \leq \ldots.$$

then we have,

$$\Pr(|Y - E[Y]| \geq \lambda) \leq \ldots.$$

We need a bound on $|Z_i - Z_{i-1}|$.
Example: Pattern Matching

\[A = (a_1, a_2, \ldots, a_n) \] string of characters, each chosen independently and uniformly at random from \(\Sigma \), with \(m = |\Sigma| \).

pattern: \(B = (b_1, \ldots, b_k) \) fixed string, \(b_i \in \Sigma \).

\(F \) = number occurrences of \(B \) in random string \(S \).

\[\mathbb{E}[F] = (n - k + 1) \left(\frac{1}{m} \right)^k. \]

Can we bound the deviation of \(F \) from its expectation?
\(F = \) number occurrences of \(B \) in random string \(A \).

\(Z_0 = E[F] \) and \(Z_n = F \).

\(Z_i = E[F|a_1, \ldots, a_i], \) for \(i = 1, \ldots, n \).

\(Z_0, Z_1, \ldots, Z_n \) is a Doob martingale.

Each character in \(A \) can participate in no more than \(k \) occurrences of \(B \):

\[
|Z_i - Z_{i+1}| \leq k
\]

Azuma-Hoeffding inequality (version 1):

\[
\Pr(\|F - E[F]\| \geq \lambda) \leq 2e^{-\lambda^2/(2nk^2)}
\]
McDiarmid Bound

In general it is hard to prove a bound on $|Z_i - Z_{i-1}|$. This theorem gives a general condition:

Theorem

Assume that $f(X_1, X_2, \ldots, X_n)$ satisfies, for all $1 \leq i \leq n$,

$$|f(x_1, \ldots, x_i, \ldots, x_n) - f(x_1, \ldots, y_i, \ldots, x_n)| \leq c_i.$$

and X_1, \ldots, X_n are independent, then

$$\Pr(|f(X_1, \ldots, X_n) - E[f(X_1, \ldots, X_n)]| \geq \lambda) \leq 2e^{-2\lambda^2/(\sum_{k=1}^{n} c_k^2)}.$$

[Changing the value of X_i changes the value of the function by at most c_i.]
Proof

Define a Doob martingale Z_0, Z_1, \ldots, Z_n:

- $Z_0 = \mathbb{E}[f(X_1, \ldots, X_n)] = \mathbb{E}[f(\bar{X})]$
- $Z_i = \mathbb{E}[f(X_0, \ldots, X_n) | X_1, \ldots, X_i] = \mathbb{E}[f(X_i, \ldots, X_n) | X^i]$
- $Z_n = f(X_1, \ldots, X_n) = f(\bar{X})$

We want to prove that this martingale satisfies the conditions of Theorem (Azuma-Hoeffding Inequality)

Theorem (Azuma-Hoeffding Inequality)

Let Z_0, Z_1, \ldots, Z_n be a martingale with respect to X_0, X_1, X_2, \ldots, such that

\[B_k \leq Z_k - Z_{k-1} \leq B_k + c_k, \]

for some constants c_k and for some random variables B_k that may be functions of $X_0, X_1, \ldots, X_{k-1}$. Then, for all $t \geq 0$ and any $\lambda > 0$,

\[\Pr(|Z_t - Z_0| \geq \lambda) \leq 2e^{-2\lambda^2/(\sum_{k=1}^{t} c_k^2)}. \]
Lemma

If X_1, \ldots, X_n are independent and

$$|f(x_1, \ldots, x_i, \ldots, x_n) - f(x_1, \ldots, y_i, \ldots, x_n)| \leq c_i.$$

then for some random variable B_k,

$$B_k \leq Z_k - Z_{k-1} \leq B_k + c_k,$$

Hence $Z_k - Z_{k-1}$ is bounded above by

$$\sup_x E[f(\tilde{X}) \mid X^k, X_k = x] - E[f(\tilde{X}) \mid X^{k-1}]$$

and bounded below by

$$\inf_y E[f(\tilde{X}) \mid X^{k-1}, X_k = y] - E[f(\tilde{X}) \mid X^{k-1}]$$
\[Z_k - Z_{k-1} = \sup_{x,y} \mathbb{E}[f(\bar{X}, X_k = x) - f(\bar{X}, X_k = y) \mid X_{k-1}]. \]

Because the \(X_i \) are independent, the values for \(X_{k+1}, \ldots, X_n \) do not depend on the values of \(X_1, \ldots, X_k \).

\[
\begin{align*}
\sup_{x,y} \mathbb{E}[f(\bar{X}, x) - f(\bar{X}, y) \mid X_1 = x_1, \ldots, X_{k-1} = x_{k-1}] \\
= \sup_{x,y} \sum_{x_{k+1}, \ldots, x_n} \Pr((X_{k+1} = x_{k+1}) \cap \ldots \cap (X_n = x_n)) \cdot (f(x_{[1,k-1]}, x, x_{[k+1,n]} - f(x_{[1,k-1]}, y, x_{[k+1,n]}))
\end{align*}
\]

But

\[
(f(x_{[1,k-1]}, x, x_{[k+1,n]} - f(x_{[1,k-1]}, y, x_{[k+1,n]}) \leq c_k
\]

and therefore

\[\mathbb{E}[f(\bar{X}, x) - f(\bar{X}, y) \mid X^{k-1}] \leq c_k \]
Application: Balls and Bins

We are throwing \(m \) balls independently and uniformly at random into \(n \) bins.
Let \(X_i = \) the bin that the \(i \)th ball falls into.
Let \(F = \) the number of empty bins after the \(m \) balls are thrown.

\[
E[F] = n \left(1 - \frac{1}{n}\right)^m,
\]

The sequence \(Z_i = E[F \mid X_1, \ldots, X_i] \) is a Doob martingale.
\(F = f(X_1, X_2, \ldots, X_m) \) satisfies the Lipschitz condition with bound \(1 \), and the \(X_i \)'s are independent. We therefore obtain

\[
\Pr(|F - E[F]| \geq \epsilon) \leq 2e^{-2\epsilon^2/m}
\]
Example: Polya’s Urn

• Start with m balls, r red, $m - r$ blue.
• Repeat n times:
 1. Pick a ball uniformly at random, check its color and return it to the urn.
 2. If red, add a new red ball, else add a new blue ball.

Let $X_i = 1$ if we add a red ball at step i, else $X_i = 0$

$S_n \left(\frac{r}{m} \right) = \sum_{i=1}^{n} X_i = f(X_1, \ldots, X_n)$ satisfies the Lipschitz condition with bound 1, and the X_i’s are independent.

$E[S_n \left(\frac{r}{m} \right)] = n \frac{r}{m}$.

$Z_i = E[S_n \mid X_1 = x_1, \ldots, X_i = x_i]$ is a Doob martingale.

$$\Pr(|S_n - n \frac{r}{m}| \geq \epsilon) \leq 2e^{-2\epsilon^2/m}$$
Application: Chromatic Number

Given a random graph G in $G_{n,p}$, the \textit{chromatic number} $\chi(G)$ is the minimum number of colors required to color all vertices of the graph so that no adjacent vertices have the same color.

We use the vertex exposure martingale defined below:

Let G_i be the random subgraph of G induced by the set of vertices $1, \ldots, i$, let $Z_0 = E[\chi(G)]$, and let

\[Z_i = E[\chi(G) \mid G_1, \ldots, G_i] \ . \]

Since a vertex uses no more than one new color, again we have that the gap between Z_i and Z_{i-1} is at most 1.

We conclude

\[\Pr(|\chi(G) - E[\chi(G)]| \geq \lambda \sqrt{n}) \leq 2e^{-2\lambda^2} \ . \]

This result holds even without knowing $E[\chi(G)]$.