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Due: March 6, 2025
Remember to show your work for each problem to receive full credit.

Problem 1 (40 Points)

In this exercise, we design a randomized algorithm for the following packet routing problem.
We are given a network that is an directed connected graph G, where nodes represent proces-
sors and the edges between the nodes represent wires. We are also given a set of N packets
to route. For each packet we are given a source node, a destination node, and the exact
route (path in the graph) that the packet should take from the source to its destination. (We
may assume that there are no loops in the path.) In each time step, at most one packet can
traverse any single edge. A packet can wait at any node during any time step, and we assume
unbounded queue sizes at each node.

A schedule for a set of packets specifies the timing for the movement of packets along their
respective routes. That is, it specifies which packets should move and which should wait at
each time step. Our goal is to produce a schedule for the packets that tries to minimize the
total time and the maximum queue size needed to route all the packets to their destinations.

(a) The dilation d is the maximum distance traveled by any packet. The congestion c is the
maximum number of packets that must traverse a single edge during the entire course of
the routing. Argue that the time required for any schedule should be at least Ω(c+ d).

Solution: If a packet must do d hops to reach its destination, then it is clear that the
time required for any scheduling is ≥ d. Also, if an edge must be traversed by at least c
packets, any scheduling requires ≥ c time as there is the constraint that only one packet
can traverse the same edge for any time step. By combining these two lower bounds, we
obtain that the time required by any scheduling is at least ≥ max{c, d}. We conclude
that any scheduling requires time Ω(c+ d) by observing that max{c, d} ≥ (c+ d)/2.

(b) Consider the following unconstrained schedule, where many packets may traverse an
edge during a single time step. Assign each packet an integer delay chosen randomly,
independently, and uniformly from the interval [1, ⌈ αc

log(Nd)
⌉], where α ≤ 1 is a constant.

A packet that is assigned a delay of x waits in its source node for x time steps; then it
moves on to its final destination through its specified route without ever stopping. Prove
that with probability 1 − (Nd)−

1
3α no more than 2 log(Nd)

α
packets use a particular edge

E, at a particular step t.

Solution: Number the packets from 1 to N . Let e ∈ E be an edge of the graph. Denote
with S(e) = {i : pckt i traverses edge e}. Note that for any edge e, |S(e)| ≤ c. Let
Ci,e(t) be 1 if packet i traverses edge e at time t, 0 otherwise. For any i ∈ S(e), Ci,e(t)

is a Bernoulli random variable and Ci,e(t) ≤ 1/(⌈ cα
log(Nd)

⌉) ≤ log(Nd)
cα

. This is due to the

fact that the packet i waits a random time between 1 and ⌈ cα
log(Nd)

⌉, so the probability
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that it traverses at time t is at most the probability that it chooses the right value in
this interval to start its routing (at most, as this may not be possible if t is too large).
Note that Ci,e(t) and Cj,e(t) are independent for i, j ∈ S(e), with i ̸= j. Let B1, . . . , BN

be N indepenent Bernoulli random variables with mean log(Nd)
cα

.

We now have that for any edge e and time t:

Pr

∑
i∈S(e)

Ci,e(t) ≥ 2 · log(Nd)

α

 ≤ Pr

(
c∑

i=1

Bi ≥ 2 · log(Nd)

α

)

where we used the fact that |S(e)| ≤ c, i.e. we are taking the sum over more elements.
We can apply Chernoff’s bound with δ = 1 and obtain that:

Pr

∑
i∈S(e)

Ci,e(t) ≥ 2 · log(Nd)

α

 ≤ e− log(Nd)/(cα)·c·1/3 = (Nd)−1/3α

which gives the desired bound.

(c) Again using the unconstrained schedule of part (b), show that there exists a constant
α such that the probability that more than O(log(Nd)) packets pass through any edge
at any time step is at most 1

Nd
. [Hint: argue that since there are N packets, and each

packet traverses ≤ d edges, we need to apply union bound over no more than Nd events.]

Solution: We observe that any packet arrives to its destination in time ≤ d+ ⌈ cα
log(Nd)

⌉,
hence for any packet i and edge e, Ci,e(t) = 0 if t > d + ⌈ cα

log(Nd)
⌉. Also, any packet can

traverse at maximum d edges, hence the number of edges that are traversed by at least
one packet in the graph is at most Nd. Thus, we want to bound the sum

∑
i∈S(e) Ci,e(t)

only for ≤ Nd edges and ≤ d + ⌈ cα
log(Nd)

⌉ possible time steps. By an union bound, we
have that:

γ =

(
at any time, an edge in the network is traversed by ≥ 2 · log(Nd)

α
packets

)
≤ Nd

(
d+

⌈
cα

log(Nd)

⌉)
(Nd)−1/3α

Choose some sufficiently small α so that ⌈ cα
log(Nd)

⌉ < 1 and α < 1/9. Then, γ is bounded
by

γ < (Nd) · (d+ 1)(Nd)−3

Finally, because d is a positive integer, we know that d ≥ 1/(N − 1) (assuming N > 1).
This rearranges to Nd ≥ d+ 1. Therefore,

γ < (Nd)(Nd)(Nd)−3 = (Nd)−1

as desired.
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(d) Use the unconstrained schedule to devise a simple randomized algorithm that, with high
probability (in N), produces a schedule of length O(c + d log(Nd)) using queues of size
O(log(Nd)) and following the constraint that at most one packet crosses any single edge
per time step.

Solution: Consider scaling the unconstrained schedule by 2 log(Nd)/α; that is, for each
time step, make it of size 2 log(Nd)/α so that if there are c > 1 packets at one node about
to cross a certain edge, they cross the edge one at a time. As seen in part c, with prob-
ability at least 1− 1/Nd there is no edge that will be crossed by more than 2 log(Nd)/α
packets at one point in time in the unconstrained schedule, so it is guaranteed that in
this new process that only one packet will cross one edge at a time, and there will be
queues of size O(log(Nd)) at the nodes.

Notice that the unconstrained schedule is of length at most

d+

⌈
αc

log(Nd)

⌉
.

Scaling this up by O(log(Nd)), this new process has complexity O(c + d log(Nd)) as
desired.

3



Partner 1
Partner 2
Partner 3 Homework 2

CSCI 1550 / 2540
February 20, 2025

Problem 2 (20 points)

In many wireless communication systems, each receiver listens on a specific frequency. The
bit b(t) sent at time t is represented by a 1 or −1. Unfortunately, noise from other nearby
communications can affect the receiver’s signal. A simplified model of this noise is as follows.
There are n other senders, and the ith has strength pi ≤ 1. At any time t, the ith sender is
also trying to send a bit bi(t) that is represented by 1 or −1. The receiver obtains the signal
s(t) given by

s(t) = b(t) +
n∑

i=1

pibi(t)

If s(t) is closer to 1 than −1, the receiver assumes that the bit sent at time t was a 1 otherwise,
the receiver assumes that it was a −1.

Assume that all the bits bi(t) can be considered independent, uniform random variables. Give
a Chernoff bound to prove the probability that the receiver makes an error in determining
b(t) is less than or equal to following quantity

exp(
−1

2
∑n

i=1 p
2
i

).

Solution: We know that an error occurs if the original bit b(t) = 1 and the received bit
s(t) = −1 or vice versa. By symmetry of

∑n
−=1 pibi(t) around 0, it is sufficient to calculate

the probability for the case where b(t) = 1 and s(t) = −1. Then taking a Chernoff bound,
we get that for some parameter θ:

P

(
n∑

i=1

pibi(t) > 1

)
= P

(
n∏

i=1

(
eθbi(t)

)pi
> eθ

)
≤
∏n

i=1 E[eθbi(t)pi ]
eθ

≤
∏n

i=1

(
1
2
eθpi + 1

2
e−θpi

)
eθ

We can bound the last term with the Taylor series, giving

1

2
eθ +

1

2
e−θ =

∞∑
k=0

θ2k

(2k)!
≤

∞∑
k=0

θ2k

(2kk)!
= eθ

2/2

After a quick substitution, we conclude that our error rate is bounded by e
1
2
θ2(

∑n
i=1 p

2
i )−θ.

We can minimize our error by taking the minimum of 1
2
θ2(
∑n

i=1 p
2
i ) − θ. Setting the first

derivative to 0, we see that θ = 1∑n
i=1 p

2
i
. Then we conclude that the error rate is at most

e
−1

2
∑n

i=1
p2
i .
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Problem 3 (35 points)

Bob is facing a very challenging math question in CSCI1550/2540. Even if this math
question is very hard, it has a simple binary answer Y ∈ {0, 1} (both answers are equally
likely). Bob asks for help from n fellow math-loving friends (numbered from 1 to n), and each
of them provides an answer to this math question. However, as this math question is very
hard, there is no guarantee that these answers are the same. In particular, friend i provides
an answer Xi ∈ {0, 1}, for i = 1, . . . , n. Bob knows the expertise of each friend; in particular,
he knows that for each i = 1, . . . , n, we have that:

Xi =

{
Y with probability pi > 1/2

1− Y with probability 1− pi

Formally, X1, . . . , Xn are random variables function of Y . Bob also assumes that these
friends won’t collaborate with each other; that is, given Y , the random variables X1, . . . , Xn

are independent.

Bob wants to use a function f(X1, . . . , Xn) : {0, 1}n → {0, 1} to obtain the final answer to
the hard math problem. He would like to minimize the error that the function f makes a
mistake, i.e., he wants to minimize:

Pr(f(X1, . . . , Xn) ̸= Y ) (1)

If a function f minimizes (1), we say that f is optimal. Let X⃗ = (X1, . . . , Xn).

(a) For y ∈ {0, 1}, let

g(x⃗, y) = Pr(X⃗ = x⃗|Y = y) =
∏

i:xi=y

pi
∏

i:xi=1−y

(1− pi) = exp

(∑
i:xi=y

log pi +
∑

i:xi=1−y

log(1− pi)

)

Show that a function f is optimal if and only if for any x⃗ ∈ {0, 1}n, it holds that

f(x⃗) = arg max
y∈{0,1}

g(x⃗, y)

Solution: Let f be a function f : {0, 1}n → {0, 1}. The error of this function is:

Pr(f(X1, . . . , Xn) ̸= Y ) =
∑

x⃗∈{0,1}n
Pr(f(x⃗) ̸= Y |X⃗ = x⃗) Pr(X⃗ = x⃗) =

=
∑

x⃗∈{0,1}n
Pr(X⃗ = x⃗|f(x⃗) ̸= Y ) Pr(f(x⃗) ̸= Y )
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Note that since the function f always returns the same value given x⃗, we have that Pr(f(x⃗) ̸=
Y ) = 1

2
. Also, Y ̸= f(x⃗) if and only if Y = 1− f(x⃗) Therefore, we have that:

Pr(f(X1, . . . , Xn) ̸= Y ) =
1

2

∑
x⃗∈{0,1}n

Pr(X⃗ = x⃗|Y = 1− f(x⃗))

=
1

2

∑
x⃗∈{0,1}n

g(x⃗; 1− f(x⃗))

Observe that the error is minimized if and only if for any x⃗, we choose f(x⃗) = argmaxy∈{0,1} g(x⃗, y).

(b) Bob considers a family of functions that is called weighted majority vote. That is, he
wants to assign a different weight to the answer of the different friends, based on their
competence. Let w⃗ = (w1, . . . , wn) ∈ Rn. Given w⃗, we define:

f(x⃗; w⃗) =

{
1 if

∑n
i=1Xiwi ≥

∑n
i=1(1−Xi)wi

0 otherwise

Let w⃗∗ = (w∗
1, . . . , w

∗
n), where w∗

i = ln
(

pi
1−pi

)
. Use the answer to question a. to show

that the function f(•; w⃗∗) is optimal.

Solution: We have that f(x⃗, w⃗∗) is equal to 1 if and only if

f(x⃗, w⃗∗) = 1 ⇐⇒
n∑

i=1

Xi ln

(
pi

1− pi

)
≥

n∑
i=1

(1−Xi) ln

(
pi

1− pi

)
⇐⇒

∏
i:Xi=1

pi
1− pi

≥
∏

i:Xi=0

pi
1− pi

⇐⇒
∏

i:Xi=1

pi
∏

i:Xi=0

(1− pi) ≥
∏

i:Xi=0

pi
∏

i:Xi=1

(1− pi)

⇐⇒ g(x⃗, 1) ≥ g(x⃗, 0)

The first equivalence is due to the definition of f , and the second equivalence is obtained by
applying the exponential function to both sides of the inequality. In the last equivalence, we
used the definition of g. Optimality follows by Part (a).

(c) Let f ∗(•) = f(•; w⃗∗). Use Hoeffding’s bound to show an upper bound on the error
probability

Pr(f ∗(X1, . . . , Xn) ̸= Y )

Hint: Show that if f ∗(X1, ..., Xn) ̸= Y , then the sum of weights wi, whose corresponding
answer Xi is correct, is less than or equal to 1

2

∑n
i=1wi.
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Solution: For i = 1, . . . , n, let Zi be a binary random variable that denotes the event
{Xi = Y }, i.e. Zi = 1 if and only if Xi = Y , else Zi = 0. We have that Zi is distributed
as a Bernoulli of parameter pi, i.e. Zi ∼ B(pi), and for j ̸= i, Zj is independent with Zi by
problem assumptions.

We have that f ∗ makes an error if and only if
∑n

i=1 Ziwi ≤ W
2
, where W =

∑n
i=1wi (the sum

of the weights of the correct votes is less than the sum of the incorrect votes; in case of a tie
we make the worst case assumption that we are wrong).

Let Z̃i = Ziwi. Observe that Z̃i = wi with probability pi, and Z̃i = 0 with probability
1− pi. It is clear that Z̃i ∈ [0, wi] if pi > 1/2, and Z̃i ∈ [wi, 0] if pi < 1/2, and Z̃i = piwi.

We have that:

Pr(f ∗(X1, . . . , Xn) ̸= Y ) ≤Pr

(
n∑

i=1

Z̃i ≤ W/2

)

=Pr

(
n∑

i=1

Z̃i −
n∑

i=1

piwi ≤
n∑

i=1

wi

(
1

2
− pi

))

Note that wi (1/2− pi) ≤ 0 for each i = 1, . . . , n. Hence, we can apply Hoeffding’s bound
and obtain that:

Pr(f ∗(X1, . . . , Xn) ̸= Y ) ≤ exp

(
−2 [

∑n
i=1 wi(pi − 1/2)]

2∑n
i=1 w

2
i

)

(d) Suppose that for each i = 2, . . . , n, we have that pi = 0.9, and let p1 → 1. What happens
to the upper bound computed in question c.? Is this upper bound useful or not in this
scenario?

Solution: If we have that p1 → 1 and the other p′is are all fixed, then w1 → ∞, and by
taking the limit we have that:

Pr(f ∗(X1, . . . , Xn) ̸= Y ) ≤ exp(−1/2) ≃ 0.6

Hence we have the bound becomes vacuous. This point shows a limitation of the applicability
of Hoeffding’s bound in the case of very heterogenous sums.
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Problem 4 (25 points)

This problem demonstrate the difference between additive and multiplicative error deviation
bounds.

Let G = (V,E) be an undirected graph, V = {1, . . . , n} and E ⊆ {{i, j} : i, j ∈ V and i ̸= j}.
We know the number of vertices |V | = n. We want to estimate the fraction of pairs {i, j} of
connected by an edge, ρ = m/

(
n
2

)
, where m = |E|. We can query an oracle, that given a pair

{i, j}, tells us if i and j are connected by an edge in the graph G, i.e. whether {i, j} ∈ E or
not.

(a) Additive error bound: Use the Hoeffding’s bound to bound the number of queries of
pairs, chosen uniformly at random, needed to estimate ρ within an ϵ additive error, i.e.
output ρ̃ such that |ρ̃− ρ| ≤ ϵ with probability at least 1− δ.

Solution: Let ρ̃ be the fraction of edges found out of s random queries. It holds that
ρ̃ = ρ. By Hoeffding’s bound, we have that:

Pr (|ρ̃− ρ| > ϵ) ≤ 2 exp
(
−2sϵ2

)
≤ δ

Therefore, by taking s ≥ 1
2ϵ2

ln 2
δ
samples, we have that with probability at least 1− δ, it

holds that |ρ̃− ρ| ≤ ϵ.

(b) Multiplicative error bound:

1. Assume that you given a lower bound d on the fraction ρ. If this lower bound is
true, how many random queries are needed to find an estimate ρ̃ that satisfies an ϵ
multiplicative error, i.e. |ρ̃− ρ| ≤ ϵρ, with probability at least 1− δ?

2. Assume now that you don’t have a lower bound of ρ. Design and analyze an algorithm
that estimates ρ with a number of sample adjusted to the unknown ρ. [Hint: Assume
first that ρ > 1/4, if the condition doesn’t hold assume ρ > 1/8, etc. Remember to
bound the total error probability. ]

3. For which values of ρ is it better to just check all pairs?

Solution: Using the same strategy above, we have that:

Pr (|ρ̃− ρ| > ρϵ) ≤ 2 exp
(
−2sϵ2ρ2

)
≤ 2 exp

(
−2sϵ2d2

)
In the second inequality, we use the fact that ρ ≥ d. Again, we set

2 exp
(
−2sϵ2d2

)
≤ δ .

Therefore, by taking s ≥ 1
2ϵ2d2

ln 2
δ
samples, with probability at least 1− δ, we have that

|ρ̃− ρ| ≤ ρϵ.
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Observe that if m = O(n), then ρ = o(1/n), and we need at least Ω(n
2

ϵ2
ln 1

δ
) samples to

obtain an estimate |ρ̃ − ρ| ≤ ρϵ with probability at least 1 − δ. In comparison, we only
need

(
n
2

)
queries to compute exactly the value ρ. Therefore, we observe that a sampling

strategy is not effective to obtain a multiplicative bound if m = O(n), i.e. the graph is
sparse. A sampling strategy is asymptotically convenient only if m = Ω(n1+c) for c > 0

Assume now that we do not know a lower bound d to ρ. We design an algorithm that
is able to compute multiplicative bound by iteratively guessing the value of this lower
bound.

Let d0 =
1
4
, and let di =

1
2
di−1 for i = 1, 2, . . ..

At iteration i, we do si random queries and compute the fraction of edges found ρ̃i.
Fixed ϵ and δi (see next equation), the number of samples si is chosen to satisfy:

Pr(|ρ̃i − ρ| ≥ ϵdi) ≤ 2 exp(−2siϵ
2d2i ) ≤ δi (2)

Suppose that the event |ρ̃i − ρ| ≤ ϵdi is true for every iteration (we will further discuss
this later). There are two situations: (i) ρ̃i − ϵdi ≥ di and (ii) ρ̃i − ϵdi ≤ di.

In case (i), we have that ρ ≥ ρ̃i−ϵdi ≥ di (first inequality due to event, second inequality
due to the fact that we are in case (i)), therefore we are guaranteed that our lower bound
is correct and we can return ρ̃i. In case (ii), we cannot have this guarantee, therefore we
iterate again.

Observe that if di ≤ ρ/(1 + 2ϵ), then we have the guarantee that situation (i) will
occur (if event |ρ̃i − ρ| ≤ ϵdi is true). In fact, we have that:

|ρ̃i − ρ| ≤ ϵdi =⇒ ρ̃i − ϵdi ≥ ρ− 2ϵdi ≥ di

In the last inequality, we used the fact that di ≤ ρ/(1 + 2ϵ). Therefore, if di is small
enough, and |ρ̃i − ρ| ≤ ϵdi holds, then we have that situation (i) will occur and the
algorithm terminates.

Therefore, the total number of iteration is

≤ − log2(ρ) + log(1 + 2ϵ) = O

(
log2

1

ρ

)
.

Observe that after log2 n iteration, we can say that ρ ∈ O(1/n) (as the algorithm did not
terminate earlier) and a sampling strategy is not more effective (see discussion above).
Therefore, we run at maximum log2 n iterations of the algorithm, and if the algorithm
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did not terminate, we query all the edges in the graph.

This algorithm always returns a correct estimate if for i = 1, . . . , log2 n, the events
|ρ̃i − ρ| ≤ ϵdi hold (we are doing a worst case analysis, if one of this single event is not
true we say that the algorithm fails).

We set δi = δ/ log2 n. By union bound, the algorithm returns a correct estimate with
probability ≥ 1 − δ. The number of random queries required at iteration i are (solving
(2))

si ≥
1

2ϵ2d2i
ln

(
log2 n

δ

)
.
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