
CSCI 1515 Applied Cryptography

This Lecture :

· Cryptographic Hash Functions

· Putting it All Together: Secure Communication

· Pseudorandom Generator (PRG)
Pseudorandom Function (PRF)

Pseudorandom Permutation (PRP)

Summary
Symmetric-Key Public-key

Message Primitive : SKE Primitive: PKE

Secrecy Construction : block Cipher constructions : RSA/ElGamal

Message Primitive: MAC Primitive : Signature
Integrity Constructions : CBC-MAC/HMAC Construction : RSA/DSA

Secrecy Primitive : AE

& IntegrityConstruction : Encrypt-then-MAC

key Exchange Construction : Diffie-Hellman

Important Primitive : Hash function
Tool Construction : SHA

Hash Function O(x) X= 128

+ n = ?

H : 50, 13
*
-> 50 , 13

Hy

50, 13"

50 , 13
*

Collision- Resistant Hash Function (CRHF) :

It's computationally hard to find X , y ESo, 13
*

sit.

X = y , H(X) = H(y) (collision)

Birthday Problem/Paradox

There are a students in a class.

Assume each Student's birthday is a random y:** [365]

What's the probability of a collision ?

9= 366 => Prob . = 1

9= 23 = prob.= 50%

9=70 => prob= 99,9%

Y [N]
E=N+1 => prob=1

9=M => prob . = 50%
[
2128 n=?

Random Oracle Model

H : 50, 13
*
-> 50 , 13"

r 50, 134
ORACLE H

H(X) : =r
1

X v

X

q
?

H
,

Ir

Y
.

50, 13"

50 , 13
*

Applications of Hash Functions

· Deduplication

H)D+) + n
+

unique identifier
H) D2) + he

If ha+ h2 => Di + D2

If h = kn => D1=2 (why?

Virus Scan H(F) = H) F
*
(

Video Deduplication H(V= (= H) v (

Applications of Hash Functions

· HMAC Mac (m)->t
X

k 50, 24 Vrfyk (m , t)+>0/1

Mack (m) = H(k (1m) Hard to forge (mt,*)
HMACk(m) = H(k11 H(kz(l m)

Il

kitipad H(kllm*)
koppad Y

public

· Hash-and-Sign : Sign=k(H(m)

RSA Signature : Signsk(m) = H(m) mod N

· Password-based Authentication

username
, H(password)

Applications of Hash Functions
H (gab /10 . - - b)

H(gab /10 ... 1)
· HKDF (key Derivation Function) : H(gab /10 . 10)

HMAC (g9*11 salt)
:

Pseudorandom Generator (PRG) >

L

X poly(x) d L

- -
random seed ↳ "looks random" L

↑ public SaSo, 13
X deterministic :

truly random

· Fast Membership Proof (Merkle Tree)
- Blockchain

- Key Transparency

Putting it All Together : Secure Communication

Alice ga Bob
O

>

O
A Diffie-Hellman Key Exchange A

[

↓ gb ↓

gab gab
↓ Hash ↓ Hash
K K

(11 , (2)
>

(11 , (2)

Authenticated Encryption
(Encrypt-then-MAC)
Y [↑

AES HMAC

Any security issues ?

Signal : Diffie-Hellman Ratchet Adv
. Sees :

Alice gaz Bob
&"gh gar gbu

O
>

O
A Diffie-Hellman Key Exchange A

[

↓ As gb1 ↓b1 If be is leaked ?

gazbe g
92b1

↓ ↓
K1 K1 If I is leaked ?

gar
>

↓ Az ↓by

ganba ganba
↓ ↓
kz kz

>
gb

↓Az ↓ b2
Arbzganbz 9

↓ ↓
k3 k3

Summary
Symmetric-Key Public-key

Message Primitive : SKE Primitive: PKE

Secrecy Construction : block Cipher constructions : RSA/ElGamal

Message Primitive: MAC Primitive : Signature
Integrity Constructions : CBC-MAC/HMAC Construction : RSA/DSA

Secrecy Primitive : AE

& IntegrityConstruction : Encrypt-then-MAC

key Exchange Construction : Diffie-Hellman

Important Primitive : Hash function
Tool Construction : SHA

Pseudorandom Function (PRF)

Pseudorandom Generator (PRG)

X poly(x)
- -
random seed ↳ "looks random" "random-looking" string
↑ public SaSo, 13
x deterministic

truly random

Pseudorandom Function (PRF) : "random-looking" function

Pseudorandom Function (PRF)

Keyed Function F : 30 , 14" x So , 13"-> So, 13 M

M
F((, 4) + 1

deterministic key input output
poly-time

k# 50 . 13 FK : >

So , 13 50, 13m

"looks like a random function"

Pseudorandom Function (PRF)

k# 50 . 13 FK : >

How many possible FK's ?
So , 13 50, 13 m

SSC (not knowing()

f [F/F : 30, 13"-> 50,23m

f : >

How many possible f's ?

So , 13 50, 13 m

Pseudorandom Permutation (PRP)
bijective

k# 50 . 13 FK :
FR

>

>

Fi

How many possible FK's ?

So , 13 50 , 13

f [F/F : So, 13"-> 50,23"
,

SSC (not knowing()

F is bijective3 bijective

f :
f

>

>

f+

How many possible f's ?

So , 13 50 , 13"

