
CSCI 1515 Applied Cryptography

This Lecture :

· RSA Assumption/Encryption (continued
· Diffie-Hellman Assumptions
· ElGamal Encryption
· Diffie-Hellman Key Exchange
· Message Integrity

· RSA Signature

Basic Number Theory

gcd(a , N) = 1 : a & N are coprime

=> Eb St .
a. b = 1 (modN) : a is invertible modulo N,

b is its inverse , denoted as at

& = Sala - [z , N-1)
, gcd (a , N) = 13

Euler's philtotient) function $(N) : =/*
Ex :

N=p
. g (p,g are primes) P(N) = (p-1) · (9-1).

Euler's Theorem Va ,N where ged(a , N) =
1, P() = 1 (modN).

Corollary If d =etmod P(N) ,
then FaeE, (ad) = a mod N.

RSA Assumption
· Factoring Assumption : -

How?
L

Generate two n-bit primes p . 9 (p#g)
Compute N = p

: 9
Given N

, it's computationally hard to find p & a (classically

· RSA Assumption : If breaking Factoring
Generate two n-bit primes p . g (p#g)
Compute N = p

. 9 , $(N)= (p-1) (9-1)
How?
↳Choosee sit. gcd (e, $(N)) = 1 then break RSA

Compute d = e
+
mod $(N).

Given (N , e) & a random y <$ Z*, it's computationally hard to find x sit.

x
?
= y (modN)

xe

Xq Joy
d
Y

* *

"Plain" RSA Encryption X= 128 : best attack takes time 2128

· Gen (14) :

n = 0(x) n= 1024 , key length 2048

Generate two -bit p . 9 (p#g)
Compute N = p

. g , $(N)= (p-1) (9-1)
Choose e sit . gcd(e, $(N)) = 1

Compute d = e
+
mod $(N).

Enc

Pk= (N , e) Sk = d
.

me

Ma -C
· Encyk (m) : c = me mod N d

C

· Encsk(c) : m = c d mod N * Dec *

Any security issues ? (PA secure ?

Computational Security Chosen-Plaintext Attack (CPA) Security
Alice kGen (1*)

Bob
O O
A A

Co-Ency(mo) Mo : = Deck ((o)

4 =Enc(m ,) Co
, 11,

2, . . ·

>
M1 : = Deck(()

2 Enc (mm) +
↑ mz : = Deck(()

·
· ①choose &see

Mo , M1 50 , 13"
b 50, 13

C
>

c= Ency(Mb) ↑

2-128
③choose

R
④see ↓

(PPT)output> / Prtb=b'] = E+ negligible

Computational Security Chosen-Plaintext Attack (CPA) Security
Alice (pk , Sk)= Gen (1*

Bob1

O O
A ①see A

Mo , M1E So , 13n
M

b 50, 13
C

>
c= Encpk(Mb) ↑

2-128
②choose

R
③see ↓

(PPT) Boutput > /
Prtb=b'] = E+ negligible

Basic Group Theory

Def A group is a setalong with a binary operation o with properties :

① closure : Vg , LEG , goht G

② Existence of an identity : Ee-G Sit. EgEG , eog = goe = g.

③ Existence of inverse : VgzG , EheG Sit
. goh = hog = e

Inverse ofa denoted as gt
↑ Associativity : Vgz , 92 . 93 &G , (91092)093 = 910 (92093)

We say a group is abelian if it satisfies :

⑤ Commutativity : Eg , hEG , goh= hog
/

Exercises : Is this a group?

· (2
,

+)

· (2,

· (G = 50 , 1, . . . , N-13 ,
+ mod N)

· (E,

· modN)

Basic Group Theory
Group Exponentiation M
-

For a group (G, .) , gM : = gog
... g g =eg-m . = (g

+))m

gM1McMatMz (gMamz = gMem gMM = (g . h)
m gm = (gm)+

Def For a finite group , we use IG1 to denote its order (# of elements)

Let G be a finite group of order m.

VgtG , (g) : = Eggt, ..., gm
-z] (gM =e)

2
, 9 , 92, ..., e

, g , 92,., ... give

kg> /

G is a cyclic group if EgEG Sit . (g) = G
. g is a generator of G.

Thm ** for a prime p is a cyclic group of order p-1.

p =7 , (3) = 31 , 3,
2,
6 , 4 , 53 (2) = 31, 2, 43

Thm If G has prime order, then G is cyclic and every element except the identity
is a generator.

Prime-Order Subgroups of Ep
*

Def For a group (G ..), -G is a subgroup of G if (1..) forms a group.
A prime p is a safe prime if P =29+ 1 and g is a prime.

** is a cyclic group of order p-1 = zg.

Define H : = &x modp(x + *p
* 3

Thm H is a subgroup of2 of order 9.
p =7 ,

H = 31 ,
2

, 4) = (2) = (4)

Diffie-Hellman Assumptions Integer group key 2048-bit

14 , g , g) =G(1
*) O(x)-bit integer

Elliptic Curve group key 256-bit

L

Cyclic group G of ordera with generatora
· Discrete Logarithm (DLOG) Assumption :

X Xa , compute h= g
X

g
"Ex

Given (G , G , g , h) , it's computationally hard to find x (classically).
If breaking DLOG

· Computational Diffie-Hellman (CDH) Assumption :

X, Y <$Xg
, compute h= gY, hu= g3 (g*, gY) = gXY

Given (G , E , g , he
, hz), it's computationally hard to find gr?

Break CDH

· Decisional Diffie-Hellman (DDH) Assumption :

v

X, Y ,
z <$Xg

, compute h= gt, hu= g> Break DDH

Given (G , E , g , he
, hz), it's computationally hard to distinguish

(gY g4
, gx4) = (gX, 94

, gz) between gXY and gz.

ElGamal Encryption
· Gen (14) :

1G , q , g) = G (1
%) = can be re-used

X Xa , compute h= g
X

pk= (G , g, 9 , h) Sk = X

· Encpk (m) : me G

y Xa

c =19b,
43 . m

· Encsk(C) :

C =((1
,
(2)

m =C · (C>k)
+

Correctness ?

CPA Security ?

Secure Key Exchange

Alice Bob
O

>

O
A [

A
>

↓
[↓

k X K

k = ?

R
(Eavesdropper)

Thm (Informal) : It's impossible to construct secure key exchang from SKE

in a black-box way

Diffie-Hellman Key Exchange

Alice Bob
O O
A A

(G , g , 9) < G(11)

X Xa , compute ha =gx
(G , g, g , ha)

2

y <
$ Xa , compute hp=g)

hB
E

↓ X
↓

k = has k = ? k = hi
R

(Eavesdropper) Correctness ?

Security ?

What happens in practice

Alice Bob
O O
A Diffie-Hellman KeyExchange A
↓ ↓

k K

Symmetric-Key Encryption
[

Message Integrity

Alice Bob
O "Let's meet a gam" O
A ↑

>
A

tamper with
Is it from Alice?

Eve

R

Message Integrity

Alice Bob

(m , t) O⑭
↑ S

>
A

(m! t)
(message)
m (m ,t) (m' , t)

↓ Eve ↓ ↓
Authenticate R Verify Verify

↓ ↓ ↓
t 1 O

(tag/signature)

Message Authentication Code (MAC)

Alice Bob

⑭ (m , t)
W > ⑫↑

(mt)
(message)
m K (m ,t) k

↓ ↓ Eve ↓ ↓
Authenticate R Verify

0/1
(tag)

I a
⑬

Digital Signature

Alice Bob
O Cm , 5)
A ↑ 7 > ⑫

Im' ,w
(message)
m Sk (m , w) pk
↓ ↓ Eve ↓ ↓
Authenticate R Verify

↓ ↓
0/1

(signature

⑬ ⑬
(secret) (public)

Syntax

Message Authentication Code (MAC) Scheme TT = (Gen
, Mac, Urfy)

k= Gen (14
to Mack (m)

0/1 : = Urfyk(m, t)

Digital Signature Scheme TT = (Gen
, Sign · Urfy)

(pk,sk) - Gen (1)
5 Signsk (m)
/1 : = Vrfypi Im , r)

RSA Signature
Generate two n-bit primes p, g (PF9)
Compute N = p

. g , $(N)= (p-1) (9-1)
Choose e sit . gcd(e, $(N)) = 1

Compute d = e
+
mod $(N).

Given (N ,e) & a random y <$ Z*, it's computationally hard to find x sit.

x
?
= y (modN)Vrfy

je

Ge -m Sk= d pk = (N
, e)

d
M

* Sign *
Signs(m) = md mod N

Urfypp(m . 2) : we m (modN)

RSA Signature
-

Given (N ,e) & a random y <$ Z*, it's computationally hard to find x sit.

x
?
= y (modN)

M
xe

Ge Jo H
Sk= d pk = (N

, e)
d Y
Y

Signs(m) = H(m)·mod N
* *

Urfypp(m . 2) : we = H(m) (modN)

H : 50, 13
*
->

↑
public, deterministic function
that gives a (pseudo) random output

Security?

