
CSCI 1515 Applied Cryptography

This Lecture :

· Encryption Scheme Basics

· One-Time Pad (OTP)

· Computational Assumptions
· RSA Assumption/Encryption

Message Secrecy : Symmetric - Key Encryption

Alice Bob
O C
A 19↑

(plaintext)
m K c K

↓ ↓ m=? ↓ ↓

Encrypt R Decrypt
↓ (Eavesdropper) ↓C

(ciphertext)

⑬ ⑬

Message Secrecy : Public-key Encryption

Alice Bob
O C
A ↑

> ⑫
m PK C SK

↓ ↓ ↓ ↓
Eve m=?

Encrypt Decrypt
↓ R

↓
C (Eavesdropper) m

⑬ ⑬
(public) (secret)

Syntax

Symmetric-key Encryption (SKE) Scheme TT = (Gen , Enc, Dec
k Gen

= Enc(k,m) Enck(m)
m : = Dec(k , c) Deck (c)

Public-key Encryption (PKE) Scheme TT = (Gen , Enc, Dec
(pk, sk) - Gen

= Enc(pk ,m) EnCpk (m)
m : = Dec(sk , c) Deck(c)

Why ever using SKE ?

One-Time Pad (OTP)

k <$50 , 13"
Alice Bob
O C
A > ⑫

Encrypt : Decrypt :

Secret key k = 0100101 Secret key k = 0100101

⑦ plaintext m = 1001001 ⑦ Ciphertext c = 1101100

Ciphertext c = 1101100 plaintext m = 1001001

⑦ O 1 Correctness ?

o 0 1

1 1 O Security ?

One-Time Pad (OTP)

k <$50 , 13"
Alice Bob
O C O
A ↑

>
A

Ency(m) = C : = k #m Deck(c) : m : = k#C

R-
(Eavesdropper)

Distribution of C ?

Can we re-use K ?

Shannon's Theorem

k <$50 , 13"
Alice Bob
O C
A ↑

> ⑫
Encrypt : C : = k #m Decrypt : M : = KO

R
(Eavesdropper)

(Informal) For perfect (information- theoretic) security , n = Im/

Computational Security
kGen (1)

Alice Bob
O C
A ↑

> ⑫
M : =Enck(m) Deck (c)

R
↑

Computationally Bounded
(polynomial-time algorithm)

Computational Assumptions
polynomial-time algorithm: A(x)

Input X of length n. As running time O(n) for a constant c.

NP Problem : decision problems whose solution can be verified in poly time.

Ex : Gragh 3-coloring
⑭ ⑭

O ⑭
NP-Complete

NP-Complete Problems : "hardest" problems in NP.

Factoring
-

-
Is P = NP ? DLOG

P

NP

Computational Security
k Gen (14

Alice Bob
O C

>#X

c Enc(m)

-
m : = Deck (c)

Computationally Bounded
(polynomial-time algorithm)

E probabilistic poly-time (PPT) A . Ency(mo) Enc (me)
"Computationally indistinguishable"

Computational Security
Alice kGen (1*)

Bob
O O
A A

Co-Ency(mo) Mo : = Deck ((o)

4 =Enc(m ,) Co
, 11, 2, . . ·

>
M1 : = Deck(()

2 Enc (mr)
mz : = Deck(()
·

·

Mo , M1

b 50, 13
C

>
c= Ency(Mb) ↑

R b= %

Computational Security Chosen-Plaintext Attack (CPA) Security
Alice kGen (1*)

Bob
O O
A A

Co-Ency(mo) Mo : = Deck ((o)

4 =Enc(m ,) Co
, 11, 2, . . ·

>
M1 : = Deck(()

2 Enc (mm) +
↑ mz : = Deck(()

·
· ①choose &see

Mo , M1 50 , 13"
b 50, 13

C
>

c= Ency(Mb) ↑

2-128
③choose

R
④see ↓

(PPT)output> / Prtb=b'] = E+ negligible

Security Parameter

k Gen (14

X : security parameter
① adversary runs in time poly (x) 2
② distinguishing advantage negligible (x)

↑

negligible(x) * F constant c

Set parameters in practice :

Computational Security parameter X= 125
Best algorithm to break the scheme (e .g . find secret key) takes time -2"

How long does 218 CpU cycles take ?

Apple M5 chip : -4.6 GHz

14.6 x109 <pu cycles/s)

Construction for SKE

From pseudorandom function /Permutation (PRF/PRP)

Practical construction for PRF/PRP : block cipher
standardized implementation : AES

Computational Assumption : "The construction is secure" (heuristics)

Best attack is brute-force search (classical/quantum).

Constructions for PKE

RSA Encryption : Factoring/RSA Assumption

ElGamal Encryption : Discrete Logarithm/Diffie-Hellman Assumption

Lattice-Based Encryption Schemes (Post - Quantum Security)

Thm (Informal) : It's impossible to construct PKE from SKE in a black-box
way.

Basic Number Theory
· alb : a divides b (b = a. c)
· Primes : an integer p > 1 that only has 2 divisors : 1 & 4.

Modular Arithmetic :

a mod N : remainder of a when divided by N
ab mod N = (a mod N) . (b mod N) mod N.

a = b (modN) : a and b are congruent modulo N
n= 1000
-

How to compute ab mod N for a, b,N ofbits ? Time complexity ?

Ex : 5"mod 7 219426736459 mod 392643

Basic Number Theory
· gcd (a, b) : greatest common divisor
How to compute gcd(a ,b) ? Time complexity ?

a , b both ofa bits

Euclidean Algorithm gcd (17, 12) = 1 gcd (18, 12) =6
17 mod 12= 5 18 mod 12= 6
12 mod 5 = 2 12 mod 6 =0
5 mod z = 1

2 mod 1 = 0

· gcd(a , N) = 1 : a & N are coprime

=> Eb St . a. b = 1 (modN) : a is invertible modulo N,

b is its inverse , denoted as at
How to compute b ?

a N

Extended Euclidean Alg. gcd (17, 12) = 1 gcd (a,N) = 1
17 mod 12= 5 5= 17- 12x1 ↓V
-

12 mod 5 = 2 2 = 12- 5x2
1 = a . x+Ney↳-

5 mod z = 1 1 = 5 - 2x2 ↓modi
2 mod 1 = 0

1 = a- x

Basic Number Theory

& = Sala - [z , N-1)
, gcd (a , N) = 13

Euler's philtotient) function $(N) : =/*
Ex : Nisprime . P(N)= N-1.

N=p
. q (p,g are primes) P(N) = (p-1) · (9-1).

O(N)
Euler's Theorem Va ,N where ged(a , N) = 1, a = 1 (modN).

Corollary If d =etmod P(N) , then (ad)" = a mod N.

H H

de = 1 mod P(N) ade=PIN)
.C+E

mod
↓

d . e= P(N) .c+ 1 = 1"a modN

= a mod N

RSA Assumption
· Factoring Assumption : -

How?
L

Generate two n-bit primes p . 9 (p#g)
Compute N = p : 9
Given N

, it's computationally hard to find p & a (classically

· RSA Assumption : If breaking Factoring
Generate two n-bit primes p . g (p#g)
Compute N = p . 9 , $(N)= (p-1) (9-1)

How?
Choose ef sit. gcd (e, $(N)) = 1 then break RSA
Compute d = e

+
mod $(N).

Given N & a random y <$ Z*, it's computationally hard to find x sit.
x
?
= y (modN)

xe

Xq Joy
d
Y

* *

"Plain" RSA Encryption X= 128

· Gen (14) :
n = 0(x) n= 1024 , key length 2048

Generate two -bit p . 9 (p#g)
Compute N = p . g , $(N)= (p-1) (9-1)
Choose e sit . gcd(e, $(N)) = 1

Compute d = e
+
mod $(N).

Pk= (N , e) Sk = d
.

me

Ma -C
· Encyk (m) : c = me mod N d

C

· Encsk(c) : m = c d mod N * *

Any security issues ? (PA secure ?

Computational Security Chosen-Plaintext Attack (CPA) Security
Alice (pk , Sk)= Gen (1*

Bob1

O O
A ①see A

Mo : = Deck((o)
M1 : = Decsk(()
mz : = Dec

,k(()

·

Mo , M1E So , 13n
M

b 50, 13
C

>
c= Encpk(Mb) ↑

2-128
②choose

R
③see ↓

(PPT) Boutput) b PrTb=b'] = E+ negligible

Q & A

CSCI 1040 (The Basics of Cryptographic Systems) "Crypto for poets"
MATH 1580 (Cryptography) Why is it correct ?

CSCI 1510 (Introduction to Cryptography and Computer Security) Why is it secure ?

CSCI 1515 (Applied Cryptography) How to use it ?

E

1580

1510 1515

