
Vote

In this assignment, you’ll implement a cryptographic voting protocol based on the widely
used Helios protocol. In particular, you’ll explore how we can use zero-knowledge proofs,
blind signatures, and homomorphic encryption in practice.

Contents

1 Background Knowledge 2
1.1 Additively Homomorphic Encryption . 2
1.2 Threshold Encryption . 3
1.3 Zero-Knowledge Proofs . 4
1.4 Blind Signatures . 7
1.5 Some Resources . 8
1.6 Putting It All Together . 8

2 Assignment Specification 12
2.1 Functionality . 12
2.2 Support Code . 15
2.3 Libraries: CryptoPP . 15

3 Getting Started 16
3.1 Running . 16
3.2 Testing . 16

1

1 Background Knowledge

In this assignment, you’ll build a cryptographically secure voting platform. There are
four programs involved:

1. A Registrar that checks that all voters are registered to vote only once

2. A Tallyer that posts votes on a public bulletin board

3. Arbiters that generate the election parameters and decrypt the final result

4. Voters that can vote, view, and verify the final result

All of these parties will interact to conduct an election.

We highly recommend reading Cryptographic Voting - A Gentle Introduction in full, or
at least referencing it when writing your ZKPs. It will help immensely in understanding
the mathematics of this assignment. Note: on page 35, while calculating the verifier
challenges, it should be c0 := c− c1 and c1 := c− c0.

1.1 Additively Homomorphic Encryption

In standard encryption, encrypted data must be decrypted before it can be meaning-
fully altered. Indeed, being able to alter a ciphertext to produce a meaningful change
in the corresponding plaintext is called malleability, and is usually undesirable. In
particular, a malleable encryption scheme cannot be used in authenticated encryption.
However, being able to compute over encrypted data could be very useful, as it allows
multiple parties to compute over shared data without leaking the data itself or coordinat-
ing beforehand. Encryption schemes that allow for computation over their ciphertexts
are called homomorphic encryption schemes. Of those, some may only allow ei-
ther addition or multiplication (called additively and multiplicatively homomorphic,
respectively), while those allowing both are called fully homomorphic.

In this project, we’ll explore an additively homomorphic encryption scheme. Formally, an
additively homomorphic encryption scheme is an encryption scheme with an additional
algorithm HomAdd such that for any two messages m0,m1, we have that

Dec(HomAdd(Enc(m0),Enc(m1))) = m0 +m1

where HomAdd is a homomorphic addition operation. In other words, we can construct a
ciphertext for m0+m1 using ciphertexts for m0 and m1 individually. Similar definitions
exist for multiplicatively homomorphic and fully homomorphic schemes.

2

https://eprint.iacr.org/2016/765.pdf

We have actually already seen a simple multiplicatively homomorphic encryption scheme:
ElGamal encryption. To see why, consider the two ciphertexts below for messages m1

and m2:
c1 = (gr1 , hr1 ·m1) and c2 = (gr2 , hr2 ·m2).

Observe that we can construct a ciphertext for m1 ·m2 by multiplying component-wise
to obtain

c = (gr1+r2 , hr1+r2 · (m1 ·m2)).

We can apply the same idea to convert this encryption scheme into an additively homo-
morphic encryption scheme by instead encoding our messages as gm instead of m; then,
the above scheme becomes combining

c1 = (gr1 , hr1 · gm1) and c2 = (gr2 , hr2 · gm2)

into
c = (gr1+r2 , hr1+r2 · gm1+m2).

One glaring issue with this adaptation is that in order to decrypt and recover m1+m2 we
need to solve the discrete logarithm problem. However, for our purposes, we will only be
encrypting small values and combining them a small number of times, so a brute-force,
linear-time approach is perfectly fine. Note that this doesn’t compromise the security of
encryption as the secret key sk and the random r’s are still expected to be very large,
so a brute-force approach without knowledge of sk is still computationally infeasible.

1.2 Threshold Encryption

Let’s say we will be using homomorphic encryption that allows anyone to add their vote
to a publicly tracked value. So far, a single party (arbiter) holds the decryption key
sk and can check the value at any time they want. This isn’t necessarily desirable: it
would be nice if decryption keys could be split amongst multiple parties (arbiters) and
a ciphertext can only be jointly decrypted by all the parties together. This is known
as threshold encryption and is also achievable with ElGamal encryption.

In threshold ElGamal encryption, n parties (arbiters) will get together and each generate
a keypair (ski, pki) where pki = gski . Each party publishes pki and keeps ski private.
They will then multiply their public values together and obtain pk =

∏
i pki = g

∑
i ski .

Encryption should use this combined public key pk, and its corresponding secret key sk
is secret shared among the n parties.

In order to jointly decrypt a ciphertext c = (c1, c2) that is encrypted using this public
key, each party can partially decrypt the ciphertext, and then the parties can combine
their partial decryptions to get a full decryption. To compute a partial decryption of

3

c, each party computes cski1 . Then, multiplying all partial decryptions together retrieves∏
cski1 = c

∑
ski

1 = csk1 , which can then be used to decrypt the second component of the
ciphertext, namely gm = c2/c

sk
1 .

1.3 Zero-Knowledge Proofs

Let’s say that our protocol allows voters to encrypt 1 or 0 and post it to the public
bulletin board as a vote for or against a particular policy. How will we know that
the voters haven’t cheated and posted an encryption of 500, without decrypting every
ciphertext and checking that it is, in fact, 1 or 0? Zero-knowledge proofs allow us
to prove this fact, among many others, without revealing any other information. It
is a powerful cryptographic tool that allows us to build trust without unnecessarily
revealing information. We’ll explore three zero-knowledge proof protocols to get the
hang of things.

1.3.1 Proving Correct Encryption

The first ZKP we’ll explore is a protocol to prove that a ciphertext c = (c1, c2) is an
ElGamal encryption of 0 under a public key pk, where the witness is the randomness r
used in the encryption, in particular c1 = gr and c2 = pkr. We can think of (pk, c1, c2)
as a Diffie-Hellman tuple with witness r. The protocol is as follows.

• Message 1: The prover samples a random r′ from Zq and sends (A = gr
′
, B =

pkr
′
) to the verifier.

• Message 2: The verifier chooses a random value σ from Zq and sends it to the
prover.

• Message 3: The prover sends back r′′ = r′ + σ · r mod q to the verifier.

• Verify: Finally, the verifier verifies that gr
′′
= A · cσ1 and pkr

′′
= B · cσ2 .

Similarly, we can prove a ciphertext c = (c1, c2) is an encryption of 1 under a public key
pk, where the witness is the randomness r used in the encryption, in particular c1 = gr

and c2 = pkr · g. Notice that can re-write the ciphertext as c1 = gr and c2/g = pkr and
think of

(pk, c1, c2/g)

as a new Diffie-Hellman tuple with witness r.

4

In other words, we can use the above ZKP to prove that (c1, c2/g) is an encryption of 0
(with randomness r).

As we discussed in class, this sigma protocol satisfies completeness, is a proof of
knowledge of r, and is honest-verifier zero-knowledge. A more detailed explanation can
be found in the lecture notes and readings.

1.3.2 Proving OR Statement

The ZKP we need in the project is a proof that a ciphertext is an encryption of either
0 or 1. Proving AND statements is straightforward: simply prove both statements.
However, proving OR statements is significantly more difficult since one of the statements
could be false. We’ll approach this ZKP in steps and build up to a protocol that works.

Consider the aforementioned ZKP that c = (c1, c2) is an encryption of 0. Notice that the
prover can actually cheat in the ZKP if she knows σ before sending the first-round mes-
sage. In particular, she can first randomly sample the third-round reponse r′′ from Zq,

and then compute the first-round message by A = gr
′′
/cσ1 and B = pkr

′′
/cσ2 , which will

end up verifying correctly. This is exactly how we prove honest-verifier zero-knowledge
of the protocol. We can use this observation to generate a ZKP for an OR statement.

The prover wants to prove that a ciphertext c = (c1, c2) is an encryption of either 0 or
1 (without revealing whether it is an encryption of 0 or 1). Suppose c is an encryption
of 1 and the prover knows the randomness r. (If c is an encryption of 0, the protocol
follows similarly.) At a high level, the prover will perform two ZKPs simultaneously,
one proving c is an encryption of 0 and one proving c is an encryption of 1. For the one
proving c is an encryption of 1 (which she has a witness), she behaves honestly; for the
one proving c is an encryption of 0 (which she does not have a witness), she leverages a
simulated protocol transcript. The protocol is as follows.

• Prepare fake transcript: The prover uses the above trick to “simulate” a valid
sigma protocol for the (false) statement that c = (c1, c2) is an encryption of 0. In
particular, she randomly samples r′′0 and σ0 from Zq, and then computes A0 =

gr
′′
0 /cσ0

1 and B0 = pkr
′′
0 /cσ0

2 . She now has a “fake” transcript ((A0, B0), σ0, r
′′
0) that

verifies correctly.

• Message 1: The prover sends the first message for both ZKPs.

– For the one proving c is an encryption of 0, she sends (A0, B0) from the
simulated transcript.

– For the one proving c is an encryption of 1, she samples r′1 from Zq and sends

5

(A1 = gr
′
1 , B1 = pkr

′
1).

• Message 2: The verifier chooses a random value σ from Zq and sends it to the
prover.

• Message 3: The prover first computes σ1 = σ − σ0 mod q, where σ0 is from the
simulated transcript.

– For the proof that c is an encryption of 0, she sends back the challenge σ0
along with the third message r′′0 from the simulated proof.

– For the proof that c is an encryption of 1, she generates a response honestly
based on the challenge σ1 and her witness r, namely r′′1 = r′1 + σ1 · r mod q,
and sends it back to the verifier along with σ1.

• Verify: Finally, the verifier verifies the following:

– σ0 + σ1 = σ mod q.

– For the proof that c is an encryption of 0, verify that gr
′′
0 = A0 · cσ0

1 and

pkr
′′
0 = B0 · cσ0

2 .

– For the proof that c is an encryption of 1, verify that gr
′′
1 = A1 · cσ1

1 and

pkr
′′
1 = B1 · (c2/g)σ1 .

This protocol is known as Disjunctive Chaum-Pedersen (DCP), or the Sigma-OR
protocol. A more detailed explanation can be found in the lecture notes and readings.

1.3.3 ZKP for Partial Decryption

We explore another ZKP that proves that a partial decryption of a ciphertext c = (c1, c2)
is correct. Say that the partial decryption with regard to a partial public key pki is di.
The prover wants to prove that di is a correct partial decryption of c with regard to pki,
where the witness is the partial secret key ski. That is, pki = gski and d = cski1 . We
can think of (c1, pki, d) as a Diffie-Hellman tuple with witness ski. The protocol is as
follows.

• Message 1: The prover samples a random r from Zq and sends (A = gr, B = cr1)
to the verifier.

• Message 2: The verifier chooses a random value σ from Zq and sends it to the
prover.

6

• Message 3: The prover sends back s = r + ski · σ mod q to the verifier.

• Verify: Finally, the verifier verifies that gs = A · pkσi and cs1 = B · dσ.

1.3.4 Non-Interactive Zero-Knowledge (NIZK)

All the zero-knowledge proofs we have discussed above are only honest-verifier zero-
knowledge (HVZK); namely, it is zero-knowledge against an honest verifier who samples
the challenge σ uniformly at random. The Fiat-Shamir heuristic allows us to transform
these sigma protocols into non-interactive zero-knowledge (NIZK) proofs in the random
oracle model. Instead of asking the verifier to sample σ, we compute σ from a hash func-
tion computed on the ZK statement along with the first-round message. For example,
in ZKP for partial decryption, we compute σ = H(pki, c, d, A,B), where H is a hash
function modeled as a random oracle.

1.4 Blind Signatures

Looking ahead, in our anonymous online voting protocol, each voter will be authorized
by the registrar and obtain a signature certifying such authorization.

When the voter goes to the registrar, she will need to present her identity. In order to
unlink the voter’s encrypted vote from her identity, the voter will want her message m
(encrypted vote) to be signed by the registrar, with the caveat that she doesn’t want to
the registrar to know what m is. This is what blind signatures seek to achieve.

At a high level, the requester (voter) can cryptographically blind the mssage before
sending it to the signer (registrar). The signer then signs the blinded message and sends
it back to the requester. Finally, the requester can unblind the signature to obtain a
valid signature on the original message. The signer shouldn’t be able to link the blinded
message to the unblinded message or signature.

Surprisingly, our old friend RSA signatures can be modified to achieve blind signatures.

First, let’s recall how RSA signatures work. Suppose the signer has a public verification
key vk = (N, e) and a private signing key sk = d. To sign a message m, the signer
computes

σ = H(m)d mod N

To verify the signature, anyone can check if

H(m) = σe mod N

7

This holds because

σe = (H(m)d)e = H(m)de = H(m) mod N

To achieve blind signatures, the requester must first hide the (hashed) message H(m)
from the signer. We do this by sampling a random r from Z∗

N and computing

m′ = H(m) · re mod N

The requester sends m′ to the signer, which effectively hides m and H(m), who signs it
as if it were the original (hashed) message. Specifically, the signer computes

σ′ = (m′)d mod N

and sends this signature σ′ back to the requester. Note that

σ′ = (H(m) · re)d = H(m)d · red = H(m)d · r mod N

As such, the requester can unblind the signature by computing

σ = σ′ · r−1 mod N

To verify the signature, anyone can check if

H(m) = σe mod N

1.5 Some Resources

The following papers are incredibly useful for gaining a full understanding of protocols
like ours:

• Cryptographic Voting — A Gentle Introduction (pg. 31-35 are extremely help-
ful). Note: on page 35, while calculating the verifier challenges, it should be
c0 := c− c1 and c1 := c− c0.

• Helios

1.6 Putting It All Together

The following diagrams explain how the protocols work together from the perspective
of a voter. The first presents a general overview of the system. The last two show the
registration and voting process, respectively.

8

https://eprint.iacr.org/2016/765.pdf
https://www.usenix.org/legacy/events/sec08/tech/full_papers/adida/adida.pdf

Overall Architecture

Voter Registration Registrar

Check voter’s registration

Sign a blind signature on voter’s vote

Voter Vote Tallyer

Check voter’s vote

Publish vote, ZKP, signatures

Everybody has voted

Arbiter

Collect all votes

Verify ZKPs and signatures for all votes

Homomorphically add up votes

Publish partial decryption and ZKP

Arbiters have adjudicated

Voter

Collect all votes and partial decryptions

Verify ZKPs and signatures for all votes

Homomorphically add up votes

Verify partial decryption ZKPs

Combine partial decryptions to get election result

9

Voter to Registrar Registration

Voter Registrar

Key Exchange

vote, zkp←$GenerateVote

(vote′, r) := Blind(vote)

(id, vote′)

if already registered

return existing σ′
R

else

σ′
R := Signskr (vote

′)

σ′
R

Save vote, zkp, σ′
R, r locally Add user to database

and disconnect and disconnect

Voter to Tallyer Voting

Voter Tallyer

Key Exchange

σR := Unblind(σ′
R, r)

(vote, zkp, σR)

if

vote is not yet counted

vote has a valid σR

then

σT ←$ Signskt(vote || zkp || σR)

Publish(vote, zkp, σR, σT)

else

Throw an error

In short, we proceed in the following steps: setup, registration, voting, and verification.

10

1.6.1 Setup

• To set up, each arbiter will generate an ElGamal keypair (ski, pki) and publish pki.

• To obtain the election key, voters will multiply all of the arbiter pki together to
obtain pk.

1.6.2 Registration

• On setup, the registrar has access to an RSA signature keypair (vkr, skr).

• First, the voter then encrypts their vote using pk and generates a ZKP that proves
that the encrypted vote is either 0 or 1.

• Then, the voter blinds the encrypted vote and sends it to the registrar for signing.

• The registrar ensures that the voter hasn’t voted before and signs their (blinded)
encrypted vote using skr, and then sends the blind signature σ′

R back to the voter.

1.6.3 Voting

• On setup, the arbiters have generated an ElGamal public key pk.

• On setup, the tallyer has access to a RSA keypair (vkt, skt).

• The voter then unblinds the registrar’s signature and sends the encrypted vote,
ZKP, and unblinded signature from the registrar to the tallyer.

• The tallyer verifies the unblinded signature, and then signs the encrypted vote,
ZKP, and unblinded signature using skt.

• The tallyer publishes the encrypted vote, ZKP, unblinded signature, and (tallyer’s)
signature on a public bulletin board.

1.6.4 Partial Decryption

• On setup, the arbiters have access to their partial ElGamal secret key ski (for the
partial ElGamal public key pki).

11

• Arbiters verify the ZKPs, blind signatures, and tallyer’s signatures on all votes.

• Compute the homomorphic addition of all valid votes.

• Each arbiter generates a partial decryption and ZKP using ski.

• The arbiter publishes the partial decryption and ZKP.

• Voters can recover the final result by combining all partial decryptions and verifying
all ZKPs and signatures.

2 Assignment Specification

Please note: you may NOT change any of the function headers defined in the stencil.
Doing so will break the autograder; if you don’t understand a function header, please
ask us what it means and we’ll be happy to clarify.

2.1 Functionality

You will primarily need to edit src/drivers/crypto driver.cxx, src/pkg/arbiter.cxx,
src/pkg/election.cxx, src/pkg/registrar.cxx, src/pkg/tallyer.cxx, and src/pkg/voter.cxx.
The following is an overview of relevant files:

• src/cmd/arbiter.cxx is the main entrypoint for the auth arbiter binary. It
calls the Arbiter class.

• src/cmd/registrar.cxx is the main entrypoint for the auth registrar binary.
It calls the Registrar class.

• src/cmd/tallyer.cxx is the main entrypoint for the auth tallyer binary. It
calls the Tallyer class.

• src/cmd/voter.cxx is the main entrypoint for the auth voter binary. It calls the
Voter class.

• src/drivers/crypto driver.cxx contains all of the cryptographic protocols we
use in this assignment.

• src/pkg/arbiter.cxx Implements the Arbiter class.

12

• src/pkg/registrar.cxx Implements the Registrar class.

• src/pkg/tallyer.cxx Implements the Tallyer class.

• src/pkg/voter.cxx Implements the Voter class.

• src/pkg/election.cxx Implements the Election class, which holds most of the
interesting cryptographic operations.

The following roadmap should help you organize concerns into a sequence:

• Registration: Implement voter registration.

• Vote Generation: Implement vote generation and verification.

• Partial Decryption: Implement partial decryption and verification.

Some tips:

• Don’t use CryptoPP’s ElGamal library to implement (EG generate). Instead, do
keygen using Integers and exponentiation. The nbtheory library is fair game!

• If you ever can’t find a value, check if it’s in one of the configs.

• Comments in the messages.hpp file should help figure out which fields are which
in the ZKPs. We follow the convention in the Gentle Introduction linked above.

• Debugging ZKPs can be very hard! Inspect each value along the way to be sure
that they are what you expect. In particular, ensure that values don’t zero out.

2.1.1 Registration

Implement registration between the Voter and Registrar. Once you do so, Voters should
be able to receive a blind signature on their encrypted vote.

Application functions:

• RegistrarClient::HandleRegister(...)

• VoterClient::HandleRegister(...)

13

2.1.2 Vote Generation

Implement vote generation and verification, then allow Voters to vote with the Tallyer.
Once you do so, votes should be put into the database.

Cryptographic functions:

• CryptoDriver::EG generate()

• CryptoDriver::RSA BLIND blind(...)

• CryptoDriver::RSA BLIND unblind(...)

• ElectionClient::GenerateVote(...)

• ElectionClient::VerifyVoteZKP(...)

Application functions:

• TallyerClient::HandleTally(...)

• VoterClient::HandleVote(...)

2.1.3 Partial Decryption

Implement partial decryption and verification, then allow Arbiters to partially decrypt
the election result.

Cryptographic functions:

• ElectionClient::PartialDecrypt(...)

• ElectionClient::VerifyPartialDecryptZKP(...)

• ElectionClient::CombineVotes(...)

• ElectionClient::CombineResults(...)

Application functions:

• ArbiterClient::HandleAdjudicate(...)

14

• VoterClient::DoVerify()

2.2 Support Code

Read the support code header files before coding so you have a sense of what functionality
we provide. This isn’t a networking class, nor is it a software engineering class, so
we try to abstract away as many of these details as we can so you can focus on the
cryptography.

The following is an overview of the functionality that each support code file provides.

• Everything from prior assignments is unchanged. Hooray!

2.3 Libraries: CryptoPP

You may find the following functions useful:

• CryptoPP::EuclideanMultiplicativeInverse

• CryptoPP::a times b mod c

Note that CryptoPP::ModularMultiplication is not available in the version of
CryptoPP we are using.

• CryptoPP::ModularExponentiation

• CryptoPP::Integer::Zero

• CryptoPP::Integer::One

You may find the following wiki pages useful during this assignment:

• CryptoPP nbtheory

• CryptoPP Blind Signature

15

https://web.archive.org/web/20231129223717/https://www.cryptopp.com/docs/ref/nbtheory_8h.html
https://web.archive.org/web/20240423143020/https://www.cryptopp.com/wiki/Blind_Signature

3 Getting Started

To get started, get your stencil repository here and clone it into the devenv/home folder.
From here you can access the code from both your computer and from the Docker
container.

To prevent crypto driver.cxx solutions to earlier assignments being leaked in later
assignments, we ask that you copy your code from crypto driver functions implemented
in the last assignment into this one. The functions you copy over now will not need to
be copied over in the following assignment.

3.1 Running

To build the project, cd into the build folder and run cmake ... This will generate a
set of Makefiles building the whole project. From here, you can run make to generate a
binary you can run, and you can run make check to run any tests you write in the test
folder.

3.2 Testing

You may write tests in any of the test/**.cxx files in the Doctest format. We provide
test/test provided.cxx, feel free to write more tests in this file directly. If you want
to add any new test files, make sure to add the file to the cmake variable, TESTFILES, on
line 7 of test/CMakeLists.txt so that cmake can pick up on the new files. Examples
have been included in the assignment stencil. To build and run the tests, run make

check in the build directory. If you’d like to see if your code can interoperate with our
code (which is what it will be tested against), feel free to download our binaries here - we
try to keep these up to date, so if you’re unsure about the functionality of our binaries,
please ask us on Ed!

16

https://classroom.github.com/a/i-ag_t4u
https://github.com/BrownAppliedCryptography/binaries

	Background Knowledge
	Additively Homomorphic Encryption
	Threshold Encryption
	Zero-Knowledge Proofs
	Blind Signatures
	Some Resources
	Putting It All Together

	Assignment Specification
	Functionality
	Support Code
	Libraries: CryptoPP

	Getting Started
	Running
	Testing

