PIR

Theme Song: move

In this assignment, you will use somewhat homomorphic encryption to implement a
private information retrieval scheme, which will allow clients to retrieve information
from a server without the server learning what information they requested.

Due Date: Friday, April 11

Contents

1 Background Knowledge 2
1.1 Homomorphic Encryption 2
1.2 Private Information Retrieval 2

2 Assignment Specification 4
2.1 Functionalityo 4
2.2 Support Code e 4
2.3 Libraries: SEAL e 5

3 Getting Started 6
3.1 Running e 6
3.2 Testing oL 6

https://www.youtube.com/watch?v=7ba3uINB3ck

1 Background Knowledge

In this assignment, you will implement a private information retrieval (PIR) scheme.
This assignment leaves room for optimizations, which we leave to the reader to explore.

We recommend reading the first few pages of Communication-Computation Trade-offs
in PIR.

1.1 Homomorphic Encryption

We have already encountered additively homomorphic encryption in the Vote project. In
this project, we will utilize an encryption scheme that supports both homomorphic addi-
tion and homomorphic multiplication. In particular, consider an encryption scheme with
additional homomorphic evaluation algorithms HomAdd and HomMul such that for any
two messages mg, m1, we have both that HomAdd(Enc(my), Enc(my)) = Enc(mg + m1)
and that HomMul(Enc(myg), Enc(m1)) = Enc(mg - m1). In other words, we can construct
a ciphertext for mg + m1 or mg - my using ciphertexts for mg and m; individually.

Achieving fully homomorphic encryption which supports homomorphic evaluation for
all polynomial-sized circuits is fairly inefficient due to the expensive bootstrapping step.
Nevertheless, for most practical applications such as private information retrieval (PIR),
it suffices to have a slightly weaker primitive known as somewhat homomorphic en-
cryption (SWHE). SWHE also supports both homomorphic addition and homomorphic
multiplication, but allows for only a bounded number of homomorphic operations.

1.2 Private Information Retrieval

We turn our attention to the problem of private information retrieval (PIR). In PIR,
we have a server and a client, where the server holds a database of n plaintexts D =
{p1,...,pn} and the client wants to retrieve py for some k € [n|. We would like to allow
the client to retrieve py without the server learning k. This is distinct from OT as the
client is allowed to learn as many values as she wants. There is a trivial solution in
which the server simply sends the entire database to the client; however, this requires
communication complexity of O(n), and our goal in PIR is to achieve lower (sublinear)
communication complexity.

We can use somewhat homomorphic encryption to achieve a PIR scheme. If the client
wants to retrieve pg, we can send a selection vector s = (s1,...,$,) where s; is an
encryption of 1 and every other s; is an encryption of 0. Now, the server can homomor-

https://eprint.iacr.org/2019/1483.pdf
https://eprint.iacr.org/2019/1483.pdf

phically compute p} = p; - s; and then sum up all values of p} to retrieve an encryption of
just the selected value. The communication complexity from the server to the client is
constant (namely a single ciphertext), which is a huge improvement compared to sending
the entire database. However, the communication cost from the client to the server is
still O(n).

By organizing the database into a square of side length y/n and sending a selection vector
for each dimension (z,y), the client only needs to send 2 - \/n ciphertexts. However,
we end up incurring more ciphertext multiplications on the server side. This tradeoff
between communication and computation is hard to strike perfectly. We can generalize
this approach to organize our database into a hypercube of side length ¢n, and then
sending d- /n ciphertexts from the client to the server. In this project we will implement
the generic protocol to work with any dimension.

2 Assignment Specification

Please note: you may NOT change any of the function headers defined in the stencil.
Doing so will break the autograder; if you don’t understand a function header, please
ask us what it means and we’ll be happy to clarify.

2.1 Functionality

You will primarily need to edit src/pkg/cloud.cxx and src/pkg/agent.cxx. The
following is an overview of relevant files:

1. src/cmd/cloud.cxx is the main entrypoint for the pir_cloud binary. It calls the
Cloud class.

2. src/cmd/agent.cxx is the main entrypoint for the pir_agent binary. It calls the
Agent class.

3. src/drivers/hypercube_driver.cxx contains a driver for a hypercube data store.
4. src/pkg/cloud.cxx implements the Cloud class.

5. src/pkg/agent.cxx implements the Agent class.

2.1.1 Homomorphic Encryption and Decryption

Implement homomorphic encryption and decryption using SEAL. Once you do so, you’ll
be able to encrypt selection vectors and decrypt the final result.

Application functions:
e AgentClient::DoRetrieve(...)

e CloudClient: :HandleSend(...)

2.2 Support Code

Read the support code header files before coding so you have a sense of what functionality
we provide. This isn’t a networking class, nor is it a software engineering class, so

we try to abstract away as many of these details as we can so you can focus on the
cryptography.

The following is an overview of the functionality that each support code file provides.
1. src/drivers/hypercube_driver.cxx contains a hypercube datastore.

2. src-shared/messages.cxx contains a new type of message, SerializableWithContext.
The difference from Serializable messages is that these must have a SEALContext
passed in during a call to deserialize into a struct. The query and response mes-
sages are of this type.

3. Everything else from prior assignments is unchanged.

2.3 Libraries: SEAL

For this assignment, we’ll be using a new library that implement a SWHE protocol,
BFV. The code comments and the SEAL tutorials will guide you through using the
library. You may find the following repository useful during this assignment: SEAL. Be
sure to check out the examples, they will be immensely helpful!

https://github.com/microsoft/SEAL

3 Getting Started

To get started, get your stencil repository here and clone it into the devenv/home folder.
From here you can access the code from both your computer and from the Docker
container.

Before building the project, you will need to install the SEAL library. Do so by running
the following commands in order:

git clone https://github.com/microsoft/SEAL.git
cd “/SEAL

cmake -S . -B build

cmake --build build

sudo cmake --install build

3.1 Running

To build the project, cd into the build folder and run cmake ... This will generate a
set of Makefiles building the whole project. From here, you can run make to generate a
binary you can run, and you can run make check to run any tests you write in the test
folder.

3.2 Testing

You may write tests in any of the test/**.cxx files in the Doctest format. We provide
test/test_provided.cxx, feel free to write more tests in this file directly. If you want
to add any new test files, make sure to add the file to the cmake variable, TESTFILES, on
line 7 of test/CMakeLists.txt so that cmake can pick up on the new files. Examples
have been included in the assignment stencil. To build and run the tests, run make
check in the build directory. If you’d like to see if your code can interoperate with our
code (which is what it will be tested against), feel free to download our binaries here.

Note that testing locally using make check may result in a Killed message — this doesn’t
mean your code isn’t working, it just means that the library ran out of memory. Try
running it with smaller parameters (d < 3,s < 10).

https://classroom.github.com/a/zxQE_E9r
https://github.com/BrownAppliedCryptography/binaries

	Background Knowledge
	Homomorphic Encryption
	Private Information Retrieval

	Assignment Specification
	Functionality
	Support Code
	Libraries: SEAL

	Getting Started
	Running
	Testing

