Cipher

Welcome to CSCI 1515!

Throughout the semester, you’ll implement numerous systems using production-grade
cryptographic primitives. This assignment is meant to get you up to speed with C++
and the schemes you’ll spend the semester with. If you ever have any questions, don’t

hesitate to ask a TA for support!

Due Date: Wednesday, February 5th.

Contents

1 Background Knowledge
1.1 Elementary Number Theory
1.2 Diffie-Hellman Key Exchange
1.3 ElGamal Encryption oo
1.4 RSA Encryption
1.5 RSA Signature
1.6 A Word of Caution

2 Assignment Specification
2.1 Cryptographic Schemes
22 CHH4 .
2.3 Libraries: CryptoPP

3 Getting Started
3.1 Running
3.2 Testing o . e
3.3 Note on Submitting L L

11
11
11
12

1 Background Knowledge

In this assignment you’ll be implementing a few foundational cryptographic schemes. In
order to fully understand why these schemes are correct and secure, we review some of
the number theory underlying these constructions. Don’t worry — the rest of the course
won’t rely on a deep understanding of the math behind these schemes. Critically, we
don’t go over any advanced or involved proofs in this handout or course. Rather, we
introduce the results that are useful and ask that you take them at face value.

If you are interested in the advanced mathematics or theoretical proofs, we recommend
taking CSCI 1510 or MATH 1580. It is, however, crucial that you understand the
purpose and use of each scheme, and knowing how they work under the hood can help
you gain some of that understanding.

1.1 Elementary Number Theory

The following is an overview of the number theory necessary to understand the cryp-
tographic schemes in this homework. You can safely skip this section if you're already
familiar with elementary number theory, or if you’re more comfortable engaging with the
schemes directly (we’ll use language and terminology from this section, but not deeply).
This section may seem intimidating: to reiterate, you do not need to un-
derstand this math deeply to implement this assignment, and you certainly
don’t need it for the rest of the course.

1.1.1 Divisibility and GCDs

Consider two integers a,b € Z. We say that a divides b if there exists an integer ¢ € Z
such that a - ¢ = b. We denote this by a | b.

Given integers a,b,m € Z. We say that a and b are congruent mod m if there exists
an integer k € Z such that a + km = b. In other words, it means that a and b differ by
a multiple of m, or that when divided by m, they yield the same remainder. We denote
this by a = b mod m.

Recall greatest common divisors (GCDs). Given two integers a,b € Z, the GCD
of a and b is the largest integer d € Z such that d | a and d | b. We say that two
integers are coprime if their GCD is 1. Calculating the GCD of two integers can be
done efficiently using the Euclidean Algorithm, and calculating integers s,t such that
s-a+t-b = ged(a, b) can be done efficiently using the Extended Euclidean Algorithm. We
eschew a detailed explanation of either algorithm in favor of the Wikipedia articles.

https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

1.1.2 Groups

To work with some theorems more nicely in general, and to allow us to generalize some
of the following schemes, we introduce the notion of a group. A group is defined as
a set G along with a binary operation o : G x G — G, such that the following three
properties hold:

1. Closure: for any two elements a,b € G, we have that aob € G.

2. Identity: there exists an identity element e € G such that for any element a € G
we have that eoa =aoe =a.

3. Associativity: for any a,b,c € G, we have that (aob)oc=ao (boc).

4. Inverses: for any a € G, there exists an inverse element b € G such that a o b =

boa = e. We denote the inverse of a by a ™.

For example, Z under addition (where our operation o is +) is a group. The set of
integers modulo a prime p (excluding 0) under multiplication is also a group, denoted as
Zy={1,2,...,p—1}. More generally, if you consider the integers from [1, N —1] that are
coprime to N, then we can construct a special group Z%, = {a | a € [1, N—1],ged(a, N) =
1}, under multiplication. To find the inverse of an element in this group, we can simply
run the Extended Euclidean Algorithm. Given that ged(a, N) = 1, taking the relation
s-a+t-N=1 mod N, we get s-a=1 mod N where s is the inverse of a.

If group G has a finite number of elements, we say G is a finite group and let |G|
denote the order of the group (i.e., the number of elements in G). A set H C G is a
subgroup of G if H forms a group under the same operation o.

Let G be a finite group of order m. For any g € G, it holds that ¢g"* = 1 (we defer the proof
to a mathematical cryptography course). Consider the set (g) := {¢°, ¢%,..., g™ !}. We
note that (g) contains at most m elements, and it is not hard to verify that (g) is a
subgroup of G. We say G is a cyclic group if there exists g € G that generates the
whole group, namely (g) = G. In other words, every element in G is some power of g
(for any a € G, a = ¢" for some 7). In this case, g is called a generator of G.

The multiplicative group Z, (for prime p) is a cyclic group of order p— 1. If G is a finite
group of prime order, then G is a cyclic group, and every element other than the identity
is a generator. In later sections, we will be working with prime-ordre subgroups of Z.

1.1.3 Euler’'s Theorem

We end this section with one more useful result, which we state without proof. Euler’s
Theorem states that given any integers m and a where ged(a, m) = 1, it is the case that
a®™ =1 mod m. Note that ¢(m) is Euler’s totient function, defined as the number
of positive integers from [1,m — 1] that are coprime to m. In particular, for prime p,
o(p) =p—1. If m = p- q for distinct primes p, g, then ¢p(m) = (p — 1)(¢ — 1).

1.2 Diffie-Hellman Key Exchange

We now step away from number theory and consider some real cryptographic protocols.
Let’s say two parties, Alice and Bob (we typically name our honest parties Alice and Bob,
and any adversaries Eve), want to decide on a shared key to encrypt some messages. For
example, they may want to apply the one-time pad and so they need a shared, secret k-
bit integer to do so. The Diffie-Hellman key exchange protocol, developed in 1976,
is one method of coming to a shared secret. Diffie-Hellman will be used extensively
throughout the rest of the course to compute shared secrets.

Diffie-Hellman is quite simple. Alice and Bob first come to agreement on a cyclic group
G of order g with a generator g. In general, we wish to keep our groups large enough
where an adversary can’t brute-force their way into finding out the secrets. Alice and
Bob then each pick a secret random integer from Z,, denoted as a, b respectively. Alice
will compute and send g* to Bob, and Bob will compute and send ¢® to Alice. Finally,
both parties will compute ¢*® by exponentiating what they receive from the other party
with their secret integer. This value, g?, is the shared secret. (Note that fast-powering is
what makes this efficient; otherwise, computing large exponents will take a long time!)

Correctness is clear since the operations clearly end up with the same values on both
parties. What might not be clear is why this is secure. Can an adversary Eve, who is
eavesdropping on the messages that are sent (namely ¢® and ¢), figure out g?

In fact, we don’t know whether Eve can efficiently solve this problem. The hardness of
this problem is called the Diffie-Hellman assumption (decisional, computational), which
inherently assumes that discrete logarithm is computationally hard. For specific groups
that we use in practice, all known (classical) algorithms take too long (longer than the
age of the universe!) to break the Diffie-Hellman assumption.

Recall that the multiplicative group Z; (for prime p) is a cyclic group of order p — 1.
Unfortunately, the decisional Diffie-Hellman (DDH) assumption does not hold in Zj,
hence it is unacceptable for the Diffie-Hellman key exchange. To address this issue, we
work with a prime-order subgroup of Z,.

https://en.wikipedia.org/wiki/Euler%27s_theorem
https://en.wikipedia.org/wiki/Euler%27s_theorem
https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
https://en.wikipedia.org/wiki/Discrete_logarithm

Specifically, let p = 2¢+ 1 where both p, ¢ are primes (p is called a safe prime). Consider
the set of quadratic residues modulo p, namely G := {22 mod p | = € Z;}. It can be
proved that G is a subgroup of Z; with prime order g, hence every element in G (other
than 1) is a generator. The DDH assumption is believed to hold in G.

Diffie-Hellman Key Exchange
Public Parameters: generator g, group order ¢, modulus p

aERZq beRZq

A:=g% modp B:=g¢® modp

Exchange keys A and B

5:= B* = ¢"* mod p s:= A" = g mod p

1.3 ElGamal Encryption

With Diffie-Hellman key exchange, we can come to a shared key in order to send a
message. This is useful for symmetric-key encryption, which is where both Alice and
Bob encrypt and decrypt using a shared key. However, what if we can’t communicate to
find a shared key in advance? We can instead rely on asymmetric-key encryption,
also known as public-key encryption, which allows Alice to send messages to Bob but
not vice versa for a given public and secret key pair.

In general, Bob will have some secret key, sk, and some public key, pk, and publish only
pk. Alice will then use pk to encrypt messages to Bob that can only be decrypted with
sk. We explore an example of such a system called the ElIGamal encryption scheme,
developed in 1985. It is based on the Diffie-Hellman assumption and operates in a very
similar way.

We begin by describing how Bob generates his public key, pk, and secret key, sk. First,
Bob will choose a cyclic group G of order ¢ (e.g., subgroup of Zj of prime order ¢) and
a generator g. He then chooses a random integer z from Z,; and computes g*. We then
have that pk = ¢* and sk = z, so Bob publishes pk.

When Alice wants to encrypt a message m € G, which can be any element in the group
G, she first chooses a random integer y from Z,;. Then, she computes ¢; = ¢ and

https://en.wikipedia.org/wiki/ElGamal_encryption

ca = m - pk? and sends both to Bob. To decrypt, Bob computes cs - (¢i€)~! (where
inverses are computed using the Extended Euclidean Algorithm in Z;;).

ElGamal Encryption
Public Parameters: generator g, group order ¢, modulus p

Bob

sk:=x €Rr Z,

pk :=¢g* mod p

Share public key pk

Encryption

Y ER Zq
c1:=¢Y mod p

co :=m- (pk)¥ mod p

Share ciphertext (c1,c2)

Decryption

m = cy - (¥ mod p)~! mod p

Correctness is seen when we expand. Notice that co - (cﬁk)_1 =m-g*. g % =m, so
Bob recovers the original message.

Security of this scheme relies on the same assumptions as the Diffie-Hellman key ex-
change: we eschew a rigorous security proof in favor of a theoretical cryptography course
(CSCI 1510).

1.4 RSA Encryption

We explore one more public-key cryptosystem known as RSA (Rivest-Shamir-Adleman).
Unlike Diffie-Hellman key exchange and ElGamal encryption, RSA doesn’t rely on the
hardness of the discrete logarithm problem. Rather, it relies on the hardness of factoring
large integers. That is, given the product of two distinct large primes n = p - g, it is
computationally hard to find p and gq.

We start with how Bob calculates his public and secret keys. First, Bob will generate
system parameters by choosing two distinct large primes p, g. He then computes n = p-q
and ¢(n) = ¢(p-q) = (p — 1)(¢ — 1). Bob then chooses some integer e such that
ged(e,p(n)) = 1. Lastly, since e is coprime to ¢(n), we can find some d such that
e-d=1 mod ¢(n). We then set pk = (n,e) and sk = d, so Bob publishes pk.

When Alice wants to encrypt a message m, which can be any integer in Z;,, Alice simply
computes ¢ = m® mod n and sends it to Bob. To decrypt, Bob computes ¢ mod n.

RSA Encryption

Bob

Choose primes p, ¢

n=pq

¢(n) = (p—1(g—1)

Choose e s.t. ged(e, ¢(n)) =1
d:=e"! mod ¢(n)

pk:=(n,e), sk:=d

Share public key pk

Encryption

c:=m° modn

Share ciphertext ¢

Decryption

m = c® mod n

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation

Correctness relies on Euler’s theorem. We have that e-d =1 mod ¢(n), or that e-d =
k - ¢(n) + 1 for some integer k. Then, ¢ = m®? = mF*(W+1 =1 mod n by Euler’s
theorem.

In terms of security, intuitively speaking, it relies on the assumption that factoring n is
computationally hard. Without factoring n, an adversary Eve cannot discover a suitable
decryption exponent d, and is stuck. However, the above plain RSA encryption turns out
to be insecure because an adversary Eve can compute ¢ = m® mod n for any possible
message m and compare ¢ with ¢. We eschew a secure RSA encryption scheme with a
rigorous security proof in favor of a theoretical cryptography course.

1.5 RSA Signature

Orthogonal to the problem of message secrecy is message integrity. Let’s say all of our
channels are being controlled by an adversary Eve; how can we protect our messages
from being tampered with? One solution to this problem is to sign our messages; by
having the signature be difficult to compute without knowledge of a secret key, Eve will
not be able to sign altered messages. We explore the RSA Signature scheme.

RSA signature is quite similar to RSA encryption, with the caveat that to sign a message,
we use the secret key, and to verify a signature, we use the public key. However, it is
important to note that we must first hash our message before signing it; otherwise, an
adversary Eve with access to chosen messages can forge signatures. We explore this in
more detail below.

1.5.1 The importance of hashing

Consider if we didn’t hash our messages before signing them and assume an adversary
Eve has access to message signature pairs (mg, og) and (m1,01) but does not know the
signing key d.

Then Eve can compute a new message m := mg - m; mod n and a new signature
o :=o0(p-01 mod n and send (m, o) to Bob.

Bob will then verify, using the verification key e, that ¢¢ = m mod n, since ¢ =
o5 -0f = mg-mq = m mod n. Thus, Eve can forge signatures without knowing the
signing key.

This can be remedied by hashing our messages before signing them. Thus, instead of
signing m, we sign H(m) and verify that c¢ = H(m) mod n.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Signing_messages

Now even if Eve knew H(mg) and H(m1), computing H(mg - m1) will be intractible
assuming our hash function is a random oracle that produces a random output on any
input, so Eve cannot forge signatures without knowing the signing key.

RSA Signature

’ Key Generation ‘

Same as in Encryption

Share public key pk = (n,€)

Choose message m

d

Signature o := H(m)® mod n

Send (m, o)

Check H(m) =0°® mod n

Correctness relies on the same arguments from RSA encryption. Security relies on the
RSA assumption and the security of the hash function used. We eschew a rigorous
security proof in favor of a theoretical cryptography course.

1.6 A Word of Caution

While we are having you implement some schemes on your own, know that this is an ex-
ercise to help you understand these algorithms, not a warrant to use home-rolled schemes
in the wild. Building these schemes so that they are efficient and work securely all the
time is a fool’s errand, and we are all better off using standardized implementations
from well-vetted libraries (as we will do for the rest of the course with the CryptoPP
library).

A pledge for another scheme, AES, rings true:

I promise that once I see how simple AES really is, I will not implement it in production
code even though it will be really fun. This agreement will remain in effect until I learn

all about side-channel attacks and countermeasures to the point where I lose all interest
in implementing AES myself.

10

https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html#act-3-details

2 Assignment Specification

Please note that you may NOT change any of the function headers defined in the stencil.
Doing so will break the autograder; if you don’t understand a function header, please
ask us what it means and we’ll be happy to clarify.

2.1 Cryptographic Schemes

In this assignment you will implement four cryptographic schemes: Diffie-Hellman key
exchange, ElGamal encryption, RSA encryption, and RSA signature. Using what you
know about these schemes from class and from the descriptions above, implement the
function headers in &3 src/cipher.cxx. We recommend doing them in the order they
are introduced, but there is no best way to complete this assignment. In particular, you
should edit the following functions:

e diffie hellman(...)

e elgamal encrypt(...)

e elgamal decrypt(...)

e rsa encrypt(...)

e rsa decrypt(...)

e rsasign(...)

e rsa verify(...)

Remember to use the provided functions to compute random values and powers. Using
outside functions for any of the schemes isn’t permitted.

2.2 C++

Throughout this course, we will use C++. We use C++ because it is the language
in which most cryptographic libraries are written, especially those used later in the
course. Moreover, it is a highly performant language that affords us great control over
the systems we build.

11

Our development environment makes it very easy for you to write and build C++. In
terms of syntax, we recommend cppreference and learncpp as good resources to help
you learn. In general, we won’t be using very advanced C++ features, but it is good to
understand basic syntax.

2.3 Libraries: CryptoPP

In this and future assignments, we will be using CryptoPP as our library of choice
for our basic cryptographic primitives. CryptoPP is a widely used and trusted suite
of cryptographic primitives; others like it include OpenSSL. We will introduce other
libraries as the course goes along and make sure that you have all of the documentation
you need on hand to build what we ask you to build.
As of late August 2024, CryptoPP stopped hosting their documentation. If you are
searching for documentation online, it will likely be helpful to use the internet archive or
similar. We have provided links to the archived version below.
You may find the following functions useful:

e CryptoPP::EuclideanMultiplicativeInverse

e CryptoPP: :ModularExponentiation
You may find the following wiki pages useful during this assignment:

e CryptoPP Integer

e CryptoPP nbtheory

12

https://en.cppreference.com/w/
https://www.learncpp.com/
https://web.archive.org/web/20240304173717/https://www.cryptopp.com/wiki/Integer
https://web.archive.org/web/20231129223717/https://www.cryptopp.com/docs/ref/nbtheory_8h.html#ad0e863f715f6a4cf0b40c341e45c55b9

3 Getting Started

First, make sure you have a local development environment set up! See the development
environment guide for help, and let us know via EdStem or TA Hours if you need help
getting your dev environment set up.

To get started, get your stencil repository here and clone it into the €3devenv/home
folder. From here you can access the code from both your computer and from the
Docker container.

3.1 Running

We use CMake in this course to manage builds. You won’t need to know any CMake
beyond what we detail in this section, but be aware that it exists and will be used to
build your projects.

To build the project, cd into the &Sbuild folder and run cmake ... This will generate
a set of Makefiles to build the whole project. From here, you can run make to generate
a binary you can run, and you can run make check to run any tests you write in the
Stest folder.

3.2 Testing

You may write tests in any of the &3 test/**.cxx files in the Doctest format. We
provide €3 test/test_provided.cxx, feel free to write more tests in this file directly.
If you want to add any new test files, make sure to add the file to the cmake variable,
TESTFILES, on line 7 of &3 test/CMakeLists.txt so that CMake can pick up on the
new files. Examples have been included in the assignment stencil. To build and run the
tests, run make check in the build directory.

3.3 Note on Submitting

Before you submit to gradescope, you must return a value for every function. Otherwise,
the autograder will segfault and you won’t be able to see your score.

If you wish to submit to the autograder before you are fully finished, we suggest you put
temporary return values for functions that haven’t been fully implemented.

13

https://cs.brown.edu/courses/csci1515/spring-2025/misc/devenv.html
https://cs.brown.edu/courses/csci1515/spring-2025/misc/devenv.html
https://classroom.github.com/a/428xZf_B
https://cmake.org/cmake/help/latest/

	Background Knowledge
	Elementary Number Theory
	Diffie-Hellman Key Exchange
	ElGamal Encryption
	RSA Encryption
	RSA Signature
	A Word of Caution

	Assignment Specification
	Cryptographic Schemes
	C++
	Libraries: CryptoPP

	Getting Started
	Running
	Testing
	Note on Submitting

