
Auth

Theme Song: Who Am I?

In this assignment, you’ll extend the secure communication protocol from Signal to build
a secure server-client authentication system. In particular, you’ll explore the ways in
which we can use digital signatures to expand our circle of trust and be sure that nobody
is pretending to be someone they’re not.

Due Date: Friday, February 28

Contents

1 Background Knowledge 2
1.1 Digital Signatures . 2
1.2 Password Authentication . 2
1.3 Pseudorandom Functions and 2FA . 3
1.4 Putting It All Together . 3

2 Assignment Specification 9
2.1 Functionality . 10
2.2 Communication . 12
2.3 Support Code . 13
2.4 Messaging . 13
2.5 Libraries: CryptoPP . 14

3 Getting Started 15
3.1 Running . 15
3.2 Testing . 15
3.3 Collaboration . 16

1

https://www.youtube.com/watch?v=KPoCMd2DYJo

1 Background Knowledge

In this assignment, you’ll build a secure authentication platform. There are two programs
involved: a server and a client. The server acts as a central verification authority that
clients will interact with to obtain certificates. The server has its own globally-recognized
public key and signs the certificates of clients who properly register or log in. In order
to verify with the server, each client must provide a valid password and two-factor
authentication (2FA) response. With certificates, clients will be able to communicate
with each other while being protected against impersonation attacks.

1.1 Digital Signatures

You’ve interacted with digital signatures briefly in the warm-up project (Cipher), but we
will go over them again here. Digital signatures are essentially the public-key equivalent
to MACs, allowing one party to sign a message, and all other parties to verify that this
message was signed by that party. To do so, we first generate a keypair consisting of a
public verification key vk and a secret signing key sk, then use sk to sign various messages
σi = Signsk(mi). When another party is given a message and signature, they can use

vk to verify that the message was signed correctly: Vrfyvk(σi,mi)
?
= true. We want it

to be the case that it is hard to forge signatures; that is, given vk but not sk, finding
valid signatures for any message, even when given valid signatures for other messages,
is hard.

Using digital signatures, we can achieve authenticated key exchange that is secure
against man-in-the-middle attacks, which we have seen in the Signal project.

1.2 Password Authentication

You probably authenticate by password every day. Password authentication relies on
both a server and a user knowing some shared secret pwd, and the user proves that they
know this secret by sending pwd (or some altered version of it) to the server. With
the cryptographic primitives we’ve explored thus far in mind, there are a number of
näıve ways that one might implement password authentication. One might encrypt the
password and send it to the server, who will then decrypt it and store the password
in a database (also in an encrypted form) for later verification. One might think that
encryption makes this protocol secure both during transit and in storage. However, it
is vulnerable in cases where the server or database is completely compromised, as both
the database and encryption key could be leaked. Even if we hash the passwords before
encryption, adversaries that have access to the hashed passwords could mount an offline

2

brute-force dictionary attack or consult a rainbow table to crack the passwords. We want
to be careful to protect against a variety of attacks against all parts of our system.

We propose a heavily redundant but more secure password authentication scheme so
that you get a sense of the techniques you may see out in the wild. On registration, the
server generates and sends a random (say, 128-bit) salt to the user. A salt is a random
string appended to a password before hashing it to prevent näıve dictionary attacks. The
user sends the hash of their password with the salt appended: h := H(pwd ∥ salt) to the
server, which then computes a random short (say, 8-bit) pepper and hashes the user’s
message with the pepper appended yet again: h′ := H(h ∥ pepper). Finally, the server
stores the salt, but not the pepper. On login, the server sends the stored salt to the user,
who then sends the hash of their password along with the salt. Then, the server tries all
28 possible pepper values and verifies if any one of them succeeds. This salt-and-pepper
approach makes offline dictionary attacks significantly more difficult and expensive.

1.3 Pseudorandom Functions and 2FA

Random numbers are convenient because they introduce a level of unpredictability to
systems which can be very useful for keeping secret values secret (e.g. ElGamal en-
cryption uses random values to ensure that even two ciphertexts of the same message
are distinct). However, sometimes you want both you and your partner to experience
the same randomness, or you may want to cheaply generate more (pseudo)randomness
from some base seed of randomness. Pseudorandom functions (PRFs) are deterministic
but unpredictable functions that take a secret key and an input, and output a pseudo-
random value. We want that the distribution of PRF outputs to be computationally
indistinguishable from that of a truly random function.

PRFs are useful in many ways. For one, they allow you to securely generate an arbitrary
amount of seemingly random values deterministically for use in other cryptographic
protocols. In this assignment, we’ll use a PRF to implement two-factor authentication
by using PRF outputs as a way of proving that we know the value of given a shared key
s. We can generate a short-lived login token by inputting this key alongside the current
time. The server can then validate that our values are correct by computing the same
function. We can also think of this process as a pseudorandom generator (PRG) with a
random seed s that produces an arbitrarily amount of pseudorandom values.

1.4 Putting It All Together

The following diagrams explain how the protocols work together.

3

https://en.wikipedia.org/wiki/Rainbow_table

We’ll first cover interactions between a user and a server. There are four main compo-
nents:

1. One-sided authenticated key exchange

2. Registration

3. Login

4. Two-sided authenticated key exchange

One-sided authenticated key exchange. A user must either register or login with the
server to retrieve their certificate. It is assumed that the server’s public verification key,
vkServer, is known. In either case, they must first run a key exchange protocol illustrated
below. Note that from this project on we won’t be using Diffie-Hellman ratchet for ease
of implementation.

User Server

a ∈R Zq b ∈R Zq

A := ga B := gb

A

σServer ←$ SignskServer(B ∥ A)

(B,A, σServer)

VrfyvkServer(B ∥ A, σServer)

s := Ba s := Ab

From this point on, all communication is encrypted under authenticated encryption.

4

Registration. If a user wishes to register themselves, they run the following protocol:

User to Server Registration

1 : User Server

2 : (idi,new user)

3 : salti ∈R {0, 1}128

4 : salti

5 : hi := H(pwd ∥ salti)

6 : hi

7 : pepperi ∈R {0, 1}8

8 : h′
i := H(hi ∥ pepperi)

9 : seedi ∈R {0, 1}128

10 : seedi

11 : r := PRFseedi(tnow)

12 : r

13 : Verify r

14 : (vki, ski)←$ KGen

15 : vki

16 : σServer ←$ SignskServer(idi ∥ vki)

17 : certi := (idi, vki, σServer)

18 : certi

19 : Store keys, certi, and seedi locally Store (idi, h
′
i, salti, seedi) in database

5

Login. Likewise, the following diagram illustrates the login protocol.

User to Server Login

1 : User Server

2 : idi

3 : Lookup idi in database

4 : salti

5 : hi := H(pwd ∥ salti)

6 : hi

7 : Try all 28 peppers to check if

8 : h′
i := H(hi ∥ pepperi)

9 : Abort if no pepper matches

10 : r := PRFseedi(tnow)

11 : r

12 : Verify r

13 : (vki, ski)←$ KGen

14 : vki

15 : σServer ←$ SignskServer(idi ∥ vki)

16 : certi := (idi, vki, σServer)

17 : certi

18 : Store certi locally

6

Two-sided authenticated key exchange. After registration or login, a user has ob-
tained a certificate and is able to communicate with other users. We’ll now cover inter-
actions between a user and another user: the main complex part is authenticated key
exchange. The protocol for key exchange is illustrated below.

User to User Key Exchange

1 : Alice Bob

2 : certAlice (from server) certBob (from server)

3 : a ∈R Zq b ∈R Zq

4 : A := ga B := gb

5 : σAlice ←$ SignskAlice
(A ∥ certAlice) σBob ←$ SignskBob

(B ∥ certBob)

6 :
Alice sends (A, certAlice, σAlice)

Bob sends (B, certBob, σBob)

7 : VrfyvkBob
(B ∥ certBob, σBob) VrfyvkAlice

(A ∥ certAlice, σAlice)

8 : VrfyvkServer(idBob ∥ vkBob, σBob
Server) VrfyvkServer(idAlice ∥ vkAlice, σAlice

Server)

9 : s := Ba s := Ab

After key exchange all communication can be encrypted just like Signal (without the
ratchet).

In short, we proceed in the following steps: login or registration, then communication.

1.4.1 Registration

• On setup, the server has access to a RSA keypair (vkServer, skServer), and the user
has access to vkServer.

• On registration, the user initiates a connection with the server and sends their DH
public value ga.

• The server will respond with both DH public values (gb, ga) and a signature on
both values, σServer ← SignskServer(g

b ∥ ga).

• All communication past this point takes place using secret-key authenticated en-
cryption. Note that we do not implement the ratchet in this or future assignments.

• Next, the user will send their idi to the server.

• The server will generate a random 128-bit salti for this user and send it to the user.

7

• The user will use the salt to generate hi := H(pwd ∥ salti) and send hi to the
server.

• The server then generates a random 8-bit pepperi and generates h′i = H(hi ∥
pepperi).

• The server then generates a PRF seed seedi and sends it to the user for use in 2FA.

• The user generates a 2FA response r := PRFseedi(tnow), where tnow is rounded
down to the nearest second. We can also think of it as a PRG with a random seed
seedi.

• The server verifies that this response is valid by checking the past 60 seconds of
PRF responses.

• The user generates a RSA keypair (vki, ski) and sends vki to the server for signing.

• The server generates a certificate for this user σi over the fields (idi, vki), then
sends it to the user.

• The server stores (idi, h
′
i, salti, seedi) in the database.

1.4.2 Login

• On setup, the server has access to a RSA keypair (vkServer, skServer), and the user
has access to vkServer.

• On login, the user initiates a connection with the server and sends their DH public
value ga.

• The server will respond with both DH public values (gb, ga) and a signature on
both values, σServer ← SignskServer(g

b ∥ ga).

• All communication past this point takes place using secret-key authenticated en-
cryption; note that we do not implement the ratchet in this or future assignments.

• Next, the user will send their idi to the server.

• The server will retrieve (idi, h
′
i, salti, seedi) from the database and sends salti to the

user.

• The user will use the salt to generate hi := H(pwd∥salti) and send hi to the server.

8

• The server then tries all possible 8-bit pepperi and generates ĥ′i = H(hi ∥ pepperi)
until one matches h′i.

• The user sends a 2FA response r := PRFseedi(tnow), where tnow is rounded down
to the nearest second.

• The server verifies that this response is valid by checking the past 60 seconds of
PRF responses.

• The user generates a RSA keypair (vki, ski) and sends vki to the server for signing.

• The server generates a certificate for this user σi over the fields (idi, vki), then
sends it to the user.

1.4.3 Communication

• On setup, both users should have registered and obtained a certificate, and both
users have access to vkServer.

• On startup, both users run Diffie-Hellman, signing every message with the certifi-
cate they received from the server.

• Upon receipt of a DH public value from the other party, each user verifies that the
server’s signature on the certificate is valid, and that the user’s signature on the
public value is valid.

• Following these steps, the users have come to a shared secret and use symmetric-
key authenticated encryption using these values.

2 Assignment Specification

Please note: you may NOT change any of the function headers defined in the stencil.
Doing so will break the autograder. If you don’t understand a function header, please
ask us what it means and we’ll be happy to clarify.

9

2.1 Functionality

You will primarily need to edit src/drivers/crypto driver.cxx, src/pkg/user.cxx,
and src/pkg/server.cxx. The following is an overview of relevant files:

• src/cmd/user.cxx is the main entrypoint for the auth_user binary. It calls
the User class.

• src/cmd/server.cxx is the main entrypoint for the auth_server binary. It
calls the Server class.

• src/drivers/crypto driver.cxx contains all of the cryptographic protocols
we use in this assignment.

• src/pkg/user.cxx Implements the User class.

• src/pkg/server.cxx Implements the Server class.

The following roadmap should help you organize concerns into a sequence:

• RSA Signatures: Implement RSA key generation, signing, and verification.

• Revamped Diffie-Hellman: Implement our modified DH key exchange protocol
in registration and login.

• Register/Login: Implement register functionality to add new users to the system
and login functionality to verify old users.

• Communication: Implement communication functionality to allow users to talk
to each other.

Some tips:

• The encrypt and tag and decrypt and verify functions are wrapper functions
that should cut down on the amount of repetitive code in your implementation.
Use these functions to save yourself a lot of debugging time — do not call AES *

or HMAC * functions raw!

• Remember to call network driver->disconnect() at the end of handler func-
tions.

• You don’t need to replicate our CLI functionality: however, using it as a debugging
tool is helpful.

10

• If a protocol fails for any reason (e.g. invalid signature, incorrect keys, decryption
failed, etc.), throw an std::runtime error.

• Use our constants from include-shared/constants.hpp where applicable. In
particular from now on, Diffie-Hellman parameters are now hard-coded here instead
of exchanged.

• Use the chvec2str and str2chvec functions to convert to and from strings and
bytevecs, and byteblock to string and string to byteblock to convert to and
from strings and byteblocks.

• Use our function crypto driver->nowish() to get the time rounded down to the
nearest second.

• Use our function crypto driver->hash() to hash values.

• If you’re debugging and want a fresh database, you are free to simply delete
the database file at keys/server.db. Alternatively, the database driver has
a reset tables function which will do just this.

• Remember to use the functions in include-shared/keyloaders.hpp to save
any keys, seeds, or certificates you may have obtained.

2.1.1 RSA Signatures

Implement RSA Signatures by editing the following functions. Once you do so, your
clients will be able to verify the integrity of messages sent between them.

Cryptographic functions:

• CryptoDriver::RSA generate()

• CryptoDriver::RSA sign()

• CryptoDriver::RSA verify()

2.1.2 Revamped Diffie-Hellman

Implement our updated Diffie-Hellman key exchange protocol by editing the following
functions. Once you do so, your clients will be able to come to a shared secret without

11

risk of a man-in-the-middle attack occuring.

Application functions:

• ServerClient::HandleConnection(...)

• ServerClient::HandleKeyExchange(...)

• UserClient::HandleServerKeyExchange()

• UserClient::HandleUserKeyExchange()

2.1.3 Register/Login

Implement registration and login by editing the following functions. Once you do so,
your clients will be able to register and verify new users.

Application functions:

• ServerClient::HandleConnection(...)

• ServerClient::HandleLogin(...)

• ServerClient::HandleRegister(...)

• UserClient::HandleServerKeyExchange()

• DoLoginOrRegister(...)

2.2 Communication

Implement communication by editing the following functions. Note: You should be able
to reuse a lot of code from Signal, especially in communicating between users.

Application functions:

• UserClient::HandleUserKeyExchange(...)

12

2.3 Support Code

Read the support code header files before coding so you have a sense of what functionality
we provide. This isn’t a networking class, nor is it a software engineering class, so
we try to abstract away as many of these details as we can so you can focus on the
cryptography.

The following is an overview of the functionality that each support code file provides.

• src/drivers/db driver.cxx implements a class to manage database connections
and operations: use this instead of interacting with the database directly. We use
sqlite3 under the hood, so you can run sqlite3 <dbpath> to debug the database
directory if necessary.

• src/drivers/repl driver.cxx implements a convenience class to run different
REPL commands.

• src-shared/drivers/config.cxx implements a class to load configuration files.

• src-shared/keyloaders.cxx implements a class to load keys.

• src-shared/util.cxx contains a variety of utility functions which you may find
useful.

• Everything else from prior assignments is unchanged.

2.4 Messaging

The following example shows how to use our new encryption helpers alongside our net-
working library; we’ll be using this pattern for the entire course, so it’s good to get it
down now.

1 // Declare the message struct that we want to send and

2 // populate its fields

3 Message msg_s;

4 msg_s.value = "foo";

5

6 // Encrypt and tag the message: this serializes the ←↩
message ,

7 // encrypts it using AES , tags it with an HMAC , and

8 // rolls the IV into one convenient vector.

13

9 std::vector <unsigned char > message_bytes =

10 crypto_driver ->encrypt_and_tag(AES_key , HMAC_key , &←↩
msg_s);

11

12 // Send it away!

13 network_driver ->send(message_bytes);

14

15 // -----

16

17 // Receive the message

18 std::vector <unsigned char > raw_data = network_driver ->read←↩
();

19 auto msg_data = crypto_driver ->decrypt_and_verify(AES_key ,←↩
HMAC_key , raw_data);

20

21 // Deserialize the data into a message.

22 Message msg_s;

23 msg_s.deserialize(msg_data);

2.5 Libraries: CryptoPP

You may find the following wiki pages useful during this assignment:

• CryptoPP RSA Signatures

– In particular, we follow the “Signature Scheme with Appendix (Filters)” sec-
tion with the PUT_RESULT flag

– See SignatureVerificationFilter for how to use filters with PUT_RESULT. If you
prefer THROW_EXCEPTION, that is also fine but you will need to alter the cor-
responding flag in CryptoPP::RSA verify

• CryptoPP Hash Functions

• CryptoPP SHA-256

• CryptoPP Random Number Generators

14

https://web.archive.org/web/20240519025528/https://cryptopp.com/wiki/RSA_Signature_Schemes#Signature_Scheme_with_Appendix_(Filters)
https://web.archive.org/web/20240304190529/https://www.cryptopp.com/wiki/SignatureVerificationFilter#Without_THROW_EXCEPTION
https://web.archive.org/web/20240422002050/https://cryptopp.com/wiki/Hash_Functions
https://web.archive.org/web/20240528112939/https://www.cryptopp.com/wiki/SHA2
https://web.archive.org/web/20240515103726/https://www.cryptopp.com/wiki/RandomNumberGenerator

3 Getting Started

To get started, get your stencil repository here and clone it into the devenv/home

folder. From here you can access the code from both your computer and from the
Docker container.

To prevent crypto driver.cxx solutions to earlier assignments being leaked in later
assignments, we ask that you copy your code from crypto_driver functions imple-
mented in the last assignment into this one. The functions you copy over now will not
need to be copied over in the following assignment.

3.1 Running

To build the project, cd into the build folder and run cmake .. . This will generate
a set of Makefiles building the whole project. From here, you can run make to generate
a binary you can run, and you can run make check to run any tests you write in the
test folder.

To run the user binary, run ./auth_user <config file> . We have provided user
config files for you to use: you shouldn’t need to change them unless you would like to
experiment with more users. Afterwards, you can either choose to login , register ,

connect , or listen ; the former two deal with other server binaries, the latter two
deal with other user binaries. They call the corresponding Handle functions in code.

To run the server binary, run ./auth_server <port> <config file> . We have pro-
vided server config files for you to use: you shouldn’t need to change them. Afterwards,
the server will start listening for connections and handle them in separate threads.

3.2 Testing

You may write tests in any of the test/**.cxx files in the Doctest format. We
provide test/test provided.cxx, feel free to write more tests in this file directly. If
you want to add any new test files, make sure to add the file to the cmake variable,
TESTFILES, on line 7 of test/CMakeLists.txt so that cmake can pick up on the
new files. Examples have been included in the assignment stencil. To build and run
the tests, run make check in the build directory. If you’d like to see if your code
can interoperate with our code (which is what it will be tested against), feel free to
download our binaries here - we try to keep these up to date, so if you’re unsure about
the functionality of our binaries, please ask us on Ed!

15

https://classroom.github.com/a/wtefyqeD
https://github.com/BrownAppliedCryptography/binaries

3.3 Collaboration

Collaboration is allowed and encouraged! However, at the end of the day, you must write
up the solutions yourself and acknowledge any collaborators in your README.md.

16

	Background Knowledge
	Digital Signatures
	Password Authentication
	Pseudorandom Functions and 2FA
	Putting It All Together

	Assignment Specification
	Functionality
	Communication
	Support Code
	Messaging
	Libraries: CryptoPP

	Getting Started
	Running
	Testing
	Collaboration

