
Vote – Homework

Please answer the following questions. We don’t expect rigorous formal proofs:
rather, just a high-level argument from intuition. Please submit your answers as
a PDF to Gradescope. Collaboration is allowed and encouraged, but you must write up
your own answers and acknowledge your collaborators in your submission.

Due Date: Monday, March 10th

1 Fiat-Shamir Heuristic

(1) Explain how we can transform a three-round sigma protocol into a non-interactive
zero-knowledge (NIZK) proof via the Fiat-Shamir heuristic in the random oracle
model.

(2) In the above NIZK, how does the hash function protect against a malicious prover?
How does it protect against a malicious verifier?

(3) Explain how we can transform Schnorr’s identification protocol into Schnorr’s sig-
nature scheme via the Fiat-Shamir heuristic in the random oracle model.

2 ZKP for OR Statement

We’ll now construct the zero-knowledge proof (sigma protocol) for the OR statement we
need in our project.

In particular, let G be a cyclic group of prime order q with generator g, let pk ∈ G be
the public key for ElGamal encryption, and let c = (c1, c2) be an encryption under the
key pk. The ciphertext is an encryption of b ∈ {0, 1} with randomness r ∈ Zq, namely
c1 = gr and c2 = pkr · gb. We define the relation as an OR statement:

RL := {((pk, c1, c2), r) : (c1 = gr ∧ c2 = pkr) ∨ (c1 = gr ∧ c2/g = pkr)} .

(1) In the Vote handout Sec 1.3.2, we present the ZKP protocol when b = 1, namely c
is an encryption of 1 and the prover knows the randomness r. Write out the ZKP
protocol when b = 0, namely c is an encryption of 0 and the prover knows r.

(2) Combining the above protocol with the one in the Vote handout Sec 1.3.2, we have
a full ZKP protocol for the OR statement RL. In either case (b = 0 or b = 1), the

1



prover performs two ZKPs simultaneously, one proving c is an encryption of 0 and
one proving c is an encryption of 1. For the one that she has a witness, she behaves
honestly; for the one that she does not have a witness, she simulates a proof. Explain
(intuitively) why the prover cannot simulate both proofs in the ZKP protocol for
RL.

(3) (Bonus) Proof of Knowledge: Construct a PPT extractor E to extract a witness
by interacting with a prover P ∗.

(4) (Bonus) Honest-Verifier Zero-Knowledge: Construct a PPT simulator S to
generate the view for an honest verifier that has the same distribution as its view in
a real execution.

3 Attacks and Defenses

Our voting protocol was crafted very carefully to ensure that no party can gain an
advantage. Here we discuss some of the design decisions in the protocol.

(1) How do we ensure that only qualified voters can vote and that every voter can vote
at most once?

(2) Explain why we need a blind signature scheme in our protocol. Specifically, if the
registrar generates a signature on each voter’s (encrypted) vote directly, what infor-
mation could be leaked about voters? Why do blind signatures prevent this leakage?

(3) Explain why arbiters don’t need to sign their partial decryptions if their partial keys
are honestly generated.

4 Multiple Candidates

It would be nice to generalize our voting protocol to t candidates for t > 2; after all,
many election systems consider more than two candidates.

(1) Consider the following construction: to vote for candidate i ∈ {0, . . . , t − 1} for
t > 2, simply encrypt a vote of i; that is, construct a ciphertext that looks like
(gr, pkr ·gi). Then we combine all the votes using homomorphic addition and decrypt
the combined ciphertext using threshold decryption, same as before. Explain why
this protocol doesn’t work.

2



(2) If we allow each voter to vote for an arbitrary number of candidates (between 0
and t), how would you extend our protocol to support multiple candidates?

(3) (Extra Credit) If we would like to enforce each voter to vote for exactly k candi-
dates (for a particular k ∈ [1, t]), how would you design the protocol?

(4) (Extra Credit) If we would like to enforce each voter to vote for at most k
candidates (for a particular k ∈ [1, t]), namely each voter is allowed to vote for an
arbitrary number of candidates between 0 and k, how would you design the protocol?

For the above questions, if you need new zero knowledge proofs, you don’t have to
provide a detailed description of how they should work, but you need to explain the
ideas behind their construction. A valid response might include how you would compose
the kinds of zero-knowledge proofs we’ve already seen in class.

5 (Extra Credit) ZKP for Diffie-Hellman Tuples

(1) Recall the ZKP protocol for Diffie-Hellman Tuples shown in class (Lecture 10, pg.
4). Why does the protocol satisfy soundness?

In particular, if (h, u, v) is not a Diffie-Hellman tuple, then for any prover P ∗ (which
could even be computationally unbounded),

Pr[P ∗(h, u, v) ↔ V (h, u, v) outputs 1]

is extremely small (namely, negligible).

(2) Recall the Decisional Diffie-Hellman (DDH) assumption:

Definition. Let G be a cyclic group of order q with generator g, it is computationally
hard to distinguish (ga, gb, gab) from (ga, gb, gc), where a, b, c are all randomly sampled
from Zq.

Assuming the DDH problem is computationally hard, explain why it is impossible
to construct a NIZK proof for Diffie-Hellman tuples in the plain model.

3

https://cs.brown.edu/courses/csci1515/spring-2025/static/files/Post10.pdf#page=4
https://cs.brown.edu/courses/csci1515/spring-2025/static/files/Post10.pdf#page=4

	Fiat-Shamir Heuristic
	ZKP for OR Statement
	Attacks and Defenses
	Multiple Candidates
	(Extra Credit) ZKP for Diffie-Hellman Tuples

