
Auth – Homework

Please answer the following questions. We don’t expect formal proofs: rather,
just a high-level argument from intuition. Please submit your answers as a PDF
to Gradescope. Collaboration is allowed and encouraged, but you must write up your
own answers and acknowledge your collaborators in your submission.

Due Date: Monday, February 24th

1 Block Cipher Modes of Operation

(1) If you were a security engineer and would like to adopt block cipher in your system for
symmetric-key message encryption, which mode of operation (among ECB/CBC/C-
TR/OFB modes) would you choose? Why?

(2) What do you need to pay attention to during the deployment of your chosen mode
of operation?

2 Man-in-the-Middle Attacks

In the Auth project, the user and server first perform an authenticated key exchange
step. In particular, the user first sends ga which is the user’s public value. Then, the
server sends back (gb, ga, σs), where gb is the server’s public value and σs is a signature
computed on (gb, ga). Consider a slightly modified protocol where instead the server
sent back (gb, σ′

s) where σ′
s is a signature on gb.

(1) Explain a potential man-in-the-middle attack that could arise in the modified proto-
col, and why such a man-in-the-middle adversary still cannot learn anything about
the encrypted messages sent from the user to the server.

(2) Consider a weaker authentication scheme without two-factor authentication (2FA).
Suppose an adversary was able to successfully learn the shared secret gab during the
login phase. Explain why, even though we never send the password over the wire,
and even if the user chooses a very strong password, the adversary may be able to
authenticate as this user in the future. Explain why 2FA solves the problem.

1



3 Offline Dictionary Attacks

Our password-based authentication scheme is designed to protect against adversaries
that could potentially corrupt the entire storage of the server. Recall that given a hash
function H (modeled as a random oracle) and a password pwd, the following is how we
register and login:

Registration: First, the user sends their id and the server sends a random λ-bit salt
to the user. Next, the user computes h = H(pwd ∥ salt) by hashing the password with
the salt appended. The user then sends h to the server. Next, the server will choose a
random pepper ∈ {0, 1}p for some small p and compute h′ = H(h ∥ pepper). Finally, the
server stores a row (id, h′, salt).

Login: First, the user sends their id and the server responds with the stored salt to
the user. Next, the user computes and responds with h = H(pwd ∥ salt) by hashing
the password with the salt appended. The server will then try for all pepper∗ ∈ {0, 1}p
computing h∗ = H(h ∥ pepper∗), and authenticating the user if h∗ matches the stored
value h′ for any pepper∗.

(1) Explain why this verification scheme is correct; that is, a valid password should be
cleared for login.

(2) Explain an (inefficient) attack to recover users’ passwords in case the server’s entire
database is compromised.

(3) Consider a weaker scheme where the the server only stores h (instead of hashing
it again with a pepper to obtain and store h′). Explain an (inefficient) attack to
recover users’ passwords in case the server’s entire database is compromised.

(4) What roles do the salt and pepper play against offline dictionary attacks, respec-
tively?

(5) Given salt-and-pepper hashing, can a user safely use a simple/weak password?

4 Authentication

(1) During registration, we ask the user to provide a valid PRF response, even though
we just sent the user the PRF key (or PRG seed). Why is this step necessary?

Hint: we allow each id to register only once, and our network may not be stable.

2



(2) A time-to-live, or TTL, specifies the expiration date for a certificate. This is useful if
we don’t want to indefinitely authenticate a user, but rather clear a user for the next
day or so. Explain how you would extend our existing protocol to support TTLs.
Be sure to ensure that a user can’t change the TTL of their certificate without help
from a trusted server.

5 Delegated Trust

The way that our authentication scheme works is that since we trust the server, the
server can delegate trust to others that it trusts, allowing us to verify the identity of a
third party without consulting directly with the server. We’ll explore the ideas behind
larger schemes such as Public Key Infrastructure (PKI).

(1) Propose a protocol that allows users to delegate trust to other users. What does
delegation look like? What does verification look like?

(2) Suppose a secret signing key of some user u has been compromised, and suppose
we have some way of invalidating certifications (e.g., a public revocation board).
Which users should have their certificates invalidated and reissued in the case of
such a compromise?

3


	Block Cipher Modes of Operation
	Man-in-the-Middle Attacks
	Offline Dictionary Attacks
	Authentication
	Delegated Trust

