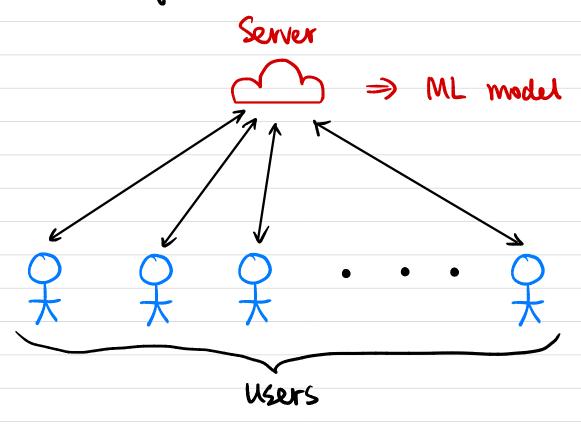
CSCI 1515 Applied Cryptography

This Lecture:

- · Federated Learning
- · Differential Privary
- · Elliptic Curve Cryptography

Federated Learning (FL)



Application: Google mobile keyboard prediction

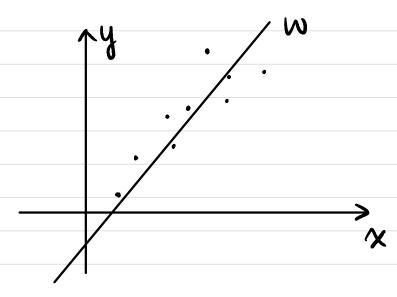
Machine Learning Background

Linear Regression

Data Points (x, y)

ML Model: coefficient vector w

Goal: Find w that minimizes L(w).



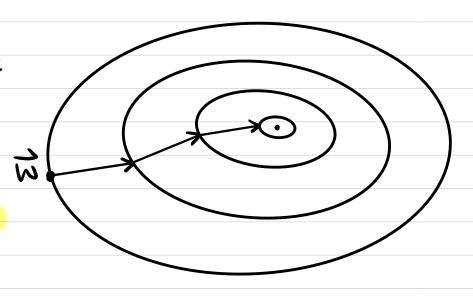
FL for Linear Regression

Stochastic Gradient Descent (SGD)

- · W initialized with arbitrary value
- · Given a data point (xi, yi):

$$\vec{w} \leftarrow \vec{w} - \eta \cdot \nabla Li(\vec{w})$$

$$\vec{w} \leftarrow \vec{w} - \eta \cdot (\langle \vec{x}_i, \vec{w} \rangle - y_i) \cdot \vec{x}_i$$

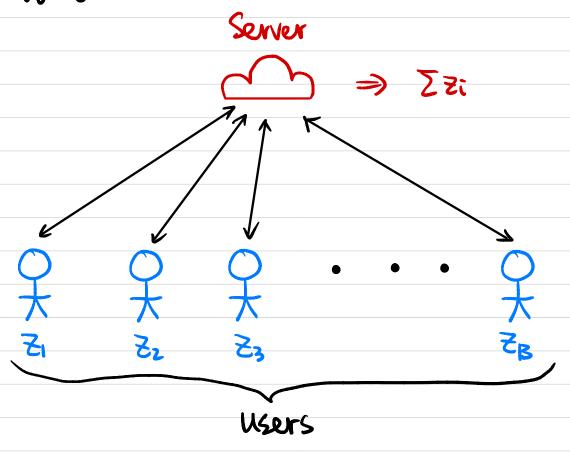


Batch SGD:

$$\vec{W} \leftarrow \vec{W} - \frac{\eta}{B} \cdot \sum_{i \in [B]} \nabla Li(\vec{W})$$

$$\begin{bmatrix} \frac{1}{x_i} \\ \end{bmatrix} \cdot \begin{bmatrix} -\frac{x_i}{w_i} \end{bmatrix} - \begin{bmatrix} \frac{1}{w_i} \\ \end{bmatrix}$$

Secure Aggregation



Potential Issues?

FL for Logistic Regression

SGD:

$$\vec{w} \leftarrow \vec{w} - \eta \cdot \nabla Li(\vec{w})$$

$$\vec{w} \leftarrow \vec{w} - \eta \cdot (f(\langle \vec{x}_i, \vec{w} \rangle) - y_i) \cdot \vec{x}_i$$

Batch SGD:

$$\vec{W} \leftarrow \vec{W} - \frac{\eta}{B} \cdot \sum_{i \in [B]} \nabla Li(\vec{W})$$

$$\vec{w} \leftarrow \vec{w} - \frac{\gamma}{B} \cdot X_B^T \cdot (f(X_B \cdot \vec{w}) - \gamma_B)$$

$$\begin{bmatrix} \frac{1}{x_i} \\ \end{bmatrix} \cdot \begin{pmatrix} f \\ \end{bmatrix} \begin{bmatrix} -\frac{x_i}{x_i} \\ \end{bmatrix} \begin{bmatrix} \frac{1}{x_i} \\ \end{bmatrix} \begin{pmatrix} \frac{y_i}{y_i} \\ \frac{y_i}{y_i} \end{pmatrix} = \begin{bmatrix} \frac{y_i}{y_i} \\ \frac{y_i}{y_i} \\ \end{bmatrix}$$

Differential Privacy

Name	Age	Gender	Race	Weight	ZIP	Disease
Alice						
Вор						
Charlie						
David						
Emily					_	
Fiona						

Want to make the (sensitive) data public / available to others (e.g. for medical study).

Attempt 1: "Anonymize" the dota.

Delete personally identifiable information (PII): name, DOB, ...

Attempt 2: Only answer aggregate statistics queries.

Privacy Guarantee?

Access to the output shouldn't enable one to learn anything about an individual compared to one without access.

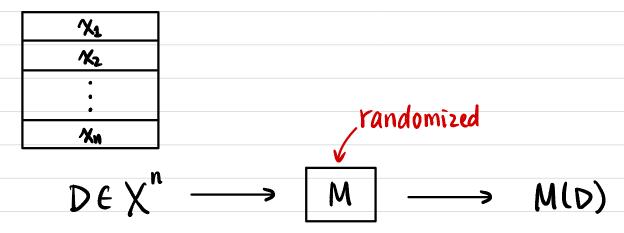
Is this possible?

Privacy Guarantee?

Access to the output shouldn't enable one to learn anything about an individual compared to one without access.

with access to the output computed on a database without the individual.

Differential Privacy

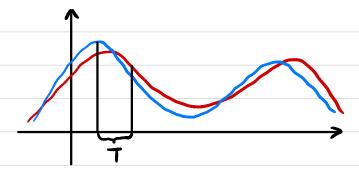


Def E-Differential Privacy for a randomized mechanism:

Uneighboring datasets D1 & D2 (differing in one row).

 $\forall T \subseteq range(M),$

Pr[M(D1) & T] & e Pr[M(D2) & T]

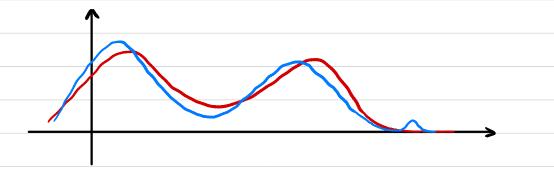


Differential Privacy

Def (E,S) - Differential Privacy for a randomized mechanism:

 \forall neighboring datasets D_1 & D_2 (differing in one row). \forall $T \subseteq \text{range}(M)$,

Pr[M(Dz) & T] & e · Pr[M(Dz) & T] + 8



Is a bigger & better for privacy, or worse?

Is a bigger S better for privacy, or worse?

Randomized Response

Counting query: What percentage of individuals satisfy predicate P?

For each row Xi:

- O Sample b € {0,1}
 - ② If b=0, then y:= P(xi)
 Otherwise, y: ₹ 50,13

 $M(D) := (y_1, y_2, \dots, y_n)$

Thm Randomized Response is ln 3 - DP.

How to estimate the query output?

How to make the mechanism more private?

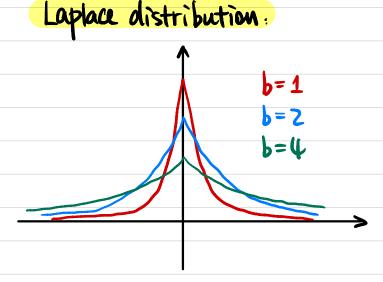
Laplace Mechanism

Def Sensitivity of a function
$$f: X^n \rightarrow \mathbb{R}$$

$$\Delta f := \max_{D_2 \sim D_2} |f(D_1) - f(D_2)|$$

Laplace Mechanism: $M(D) = f(D) + Lap(\Delta f/\epsilon)$

Thm The Laplace Mechanism is E-DP.



probability distribution function

$$PDF(x) = \frac{1}{2b} \cdot exp(-\frac{|x|}{b})$$

For X~ Lap(b), Pr[|X| > bt] = exp(-t)

Is a bigger b better for privacy, or worse?

Composition Theorems

Thm (post-processing) If $M: X^{n} \to Y$ is $(\xi, \delta) - DP$. $f: Y \to Z$ is an arbitrary randomized function, then $f \cdot M: X^{n} \to Z$ is also $(\xi, \delta) - DP$.

Thm (group privacy) If $M: X^N \to Y$ is $(\xi, 0) - DP$. then M is $(k \cdot \xi, 0) - DP$ for groups of size k.

Thm (composition) If $Mi: X^n \rightarrow Y$ is $(\xi_i, \xi_i) - DP$ $\forall i \in [k]$,

then $M(D) := (M_1(D), \dots, M_k(D))$ is $(\xi_i) \in [k] \in [k]$.

Elliptic Curve Cryptography

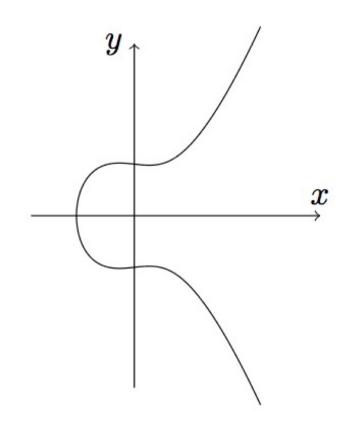
Cyclic group & of order 2 with generator g where DLOG/CDH/DDH holds.

How large is 9? (128-bit security)

- · Integer groups: 9 ~ 2048 bits
- · Elliptic Curve groups: 9 ~ 256 bits

Additional structure: bilinear pairings

Elliptic Curves



Example:
$$y^2 = x^3 - x + 9$$

Points:
$$(0, \pm 3)$$

(1, ±3)

$$(1, \pm 3)$$

$$(-1, \pm 3)$$

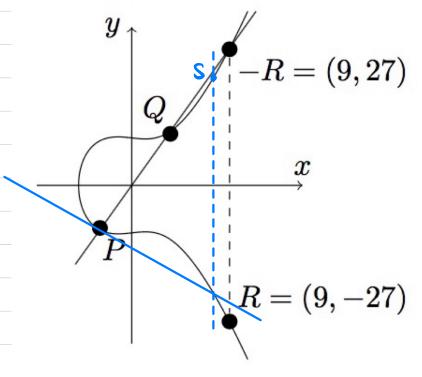
How to find rational points (x, y) $\in \mathbb{Q}^2$ on the curve?

$$x = \frac{s}{t}$$
, $y = \frac{u}{v}$

s.t. u, v ∈ Z

Elliptic Curves

How to find rational points (x, y) $\in \mathbb{Q}^2$ on the curve?



$$P = (-1, -3)$$

$$Q = (1, 3)$$

$$\Rightarrow y = 3x$$

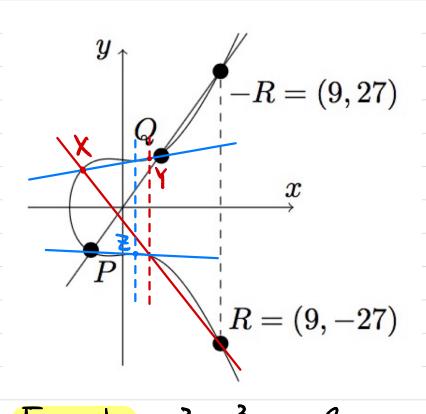
$$(3x)^{2} = x^{3} - x + 9$$

$$(3^{3} - 9x^{2} - x + 9) = 0$$

Why is the third not rational?

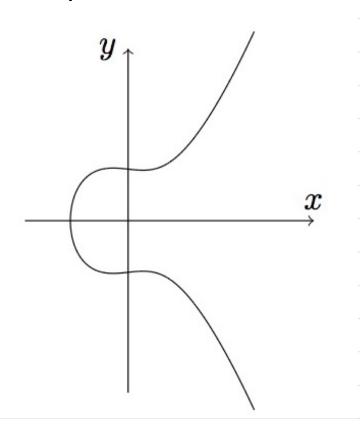
Example:
$$y^2 = x^3 - x + 9$$

Elliptic Curves



$$(P \boxplus Q) \boxplus X = P \boxplus (Q \boxplus X)$$
 $R = P \boxplus Q$
 $Y = R \boxplus X$
 $Y = P \boxplus Z$

Elliptic Curves over Finite Fields



Finite field Fp, P>3 prime

Elliptic cure E defined over Fp: E/Fp.

a.b & Fp

(x,y) is a point on the cure if $x, y \in \mathbb{F}_p$ $y^2 = x^3 + ax + b \text{ over } \mathbb{F}_p$

Point at infinity: 0

Example: $y^2 = x^3 + 1$ over F_{11} .

 $E/F_{11} = \{0, (-1,0), (0,\pm 1), (2,\pm 3), (5,\pm 4), (7,\pm 5), (9,\pm 2)\}$

Elliptic Curves over Finite Fields

Group properties:

Oclosure: $\forall g, h \in G, g \circ h \in G$

© Existence of an identity.

3 Existence of inverse.

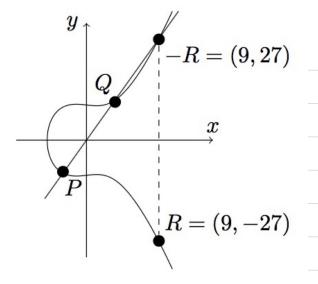
Associativity:

$$\forall g_1, g_2, g_3 \in G, (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$$

© Commutativity (abelian):

SEA algorithm: count number of points on E/IFp in time polylog(p).

How to compute go for a E 2 ?



Elliptic Curve Cryptography

- · Curve Secp25br1 (P25b)
 - prime $p = 2^{256} 2^{224} + 2^{192} + 2^{96} 1$
 - $-y^2 = x^3 3x + b$ b. 255-bit
 - Number of points on the curve is prime (close to p)
 - Generator point G
- · Curve Secp256 k1
- · Curve 25519