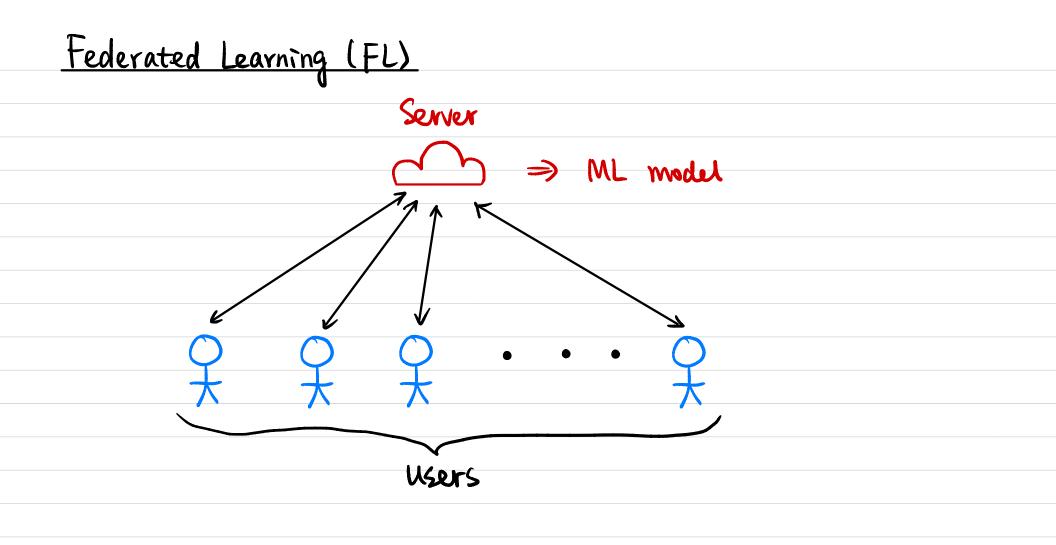
CSCI 1515 Applied Cryptography

This Lecture:

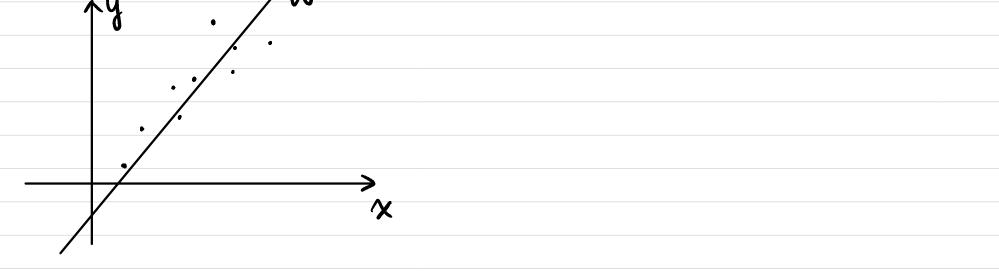
- · Federated Learning
- · Differential Privacy
- · Elliptic Curve Cryptography



Application: Google mobile keyboard prediction

Machine Learning Background
Linear Regression
Data Points
$$(\vec{x}, y)$$

ML Model: Coefficient vector \vec{w}
 $g(\vec{x}) = \langle \vec{x}, \vec{w} \rangle$
Goal: Find \vec{w} that minimizes $L(\vec{w})$.
 $\uparrow y$.



FL for Linear Regression

Stochastic Gradient Descent (SGD)

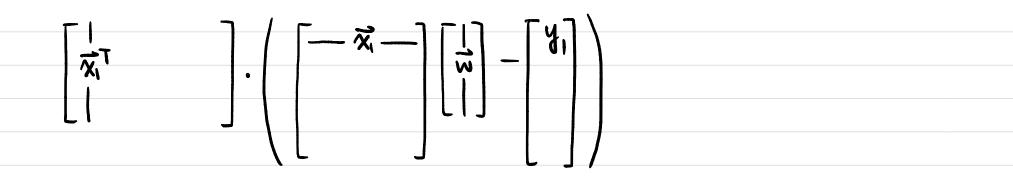
- · W initialized with arbitrary value
- · Given a data point (xi, yi):

$$\vec{w} \leftarrow \vec{w} - \eta \cdot \nabla L_i(\vec{w})$$
$$\vec{w} \leftarrow \vec{w} - \eta \cdot (\langle \vec{x}_i, \vec{w} \rangle - y_i) \cdot \vec{x}_i$$

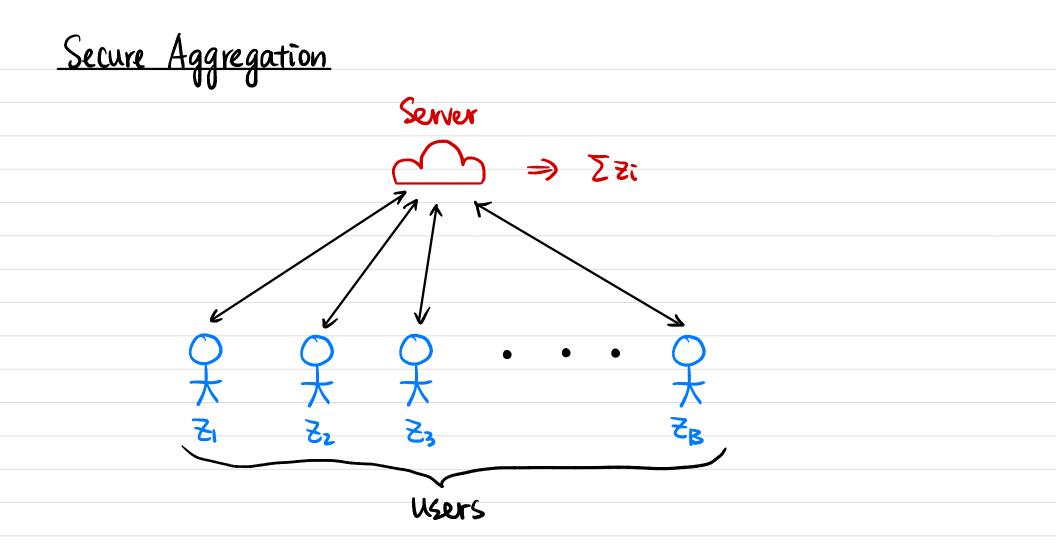
Batch SGD:

$$\vec{w} \leftarrow \vec{w} - \frac{\eta}{B} \cdot \sum_{i \in IB} \nabla Li(\vec{w})$$

 $\vec{w} \leftarrow \vec{w} - \frac{\eta}{B} \cdot \chi_{B}^{T} \cdot (\chi_{B} \cdot \vec{w} - \chi_{B})$



いる



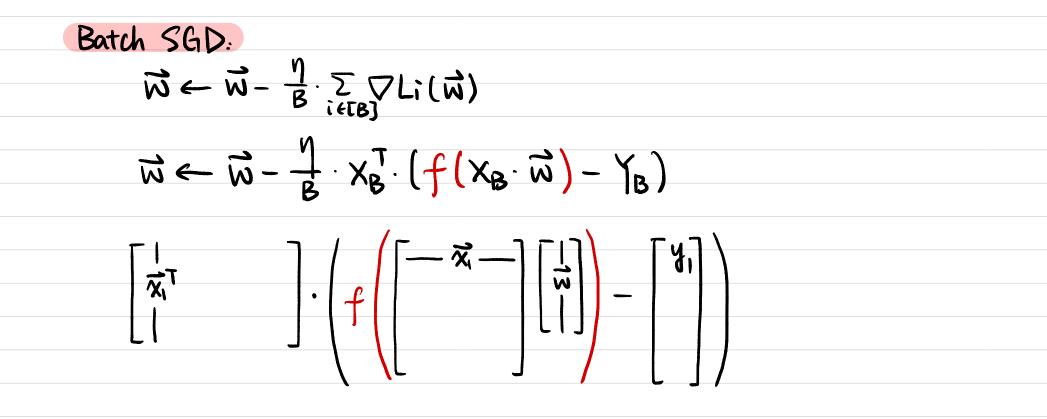
Potential Issues?

FL for Logistic Regression

SGD:

$$\vec{\omega} \leftarrow \vec{\omega} - \eta \cdot \nabla Li(\vec{\omega})$$

 $\vec{\omega} \leftarrow \vec{\omega} - \eta \cdot (f(\langle \vec{x}_i, \vec{\omega} \rangle) - y_i) \cdot \vec{x}_i$



Differential Privacy

Name	Age	Gender	Race	Weight	ZIP	Disease
-			INCC	voeijite		PIJOASC
Alice						
Bob						
Charlie						
David						
Emily						
Fiona						

Want to make the (sensitive) data public (available to others (e.g. for medical study).

Attempt 1: "Anonymize" He data. Delete personally identifiable information (PII): hame, DOB, ...

Attempt 2: Only answer aggregate statistics queries.

Access to the output shouldn't enable one to learn anything about

an individual compared to one without access.

Is this possible? Privacy vs. Correctness/Utility

Privacy Guarantee? Access to the output shouldn't enable one to learn anything about

much more

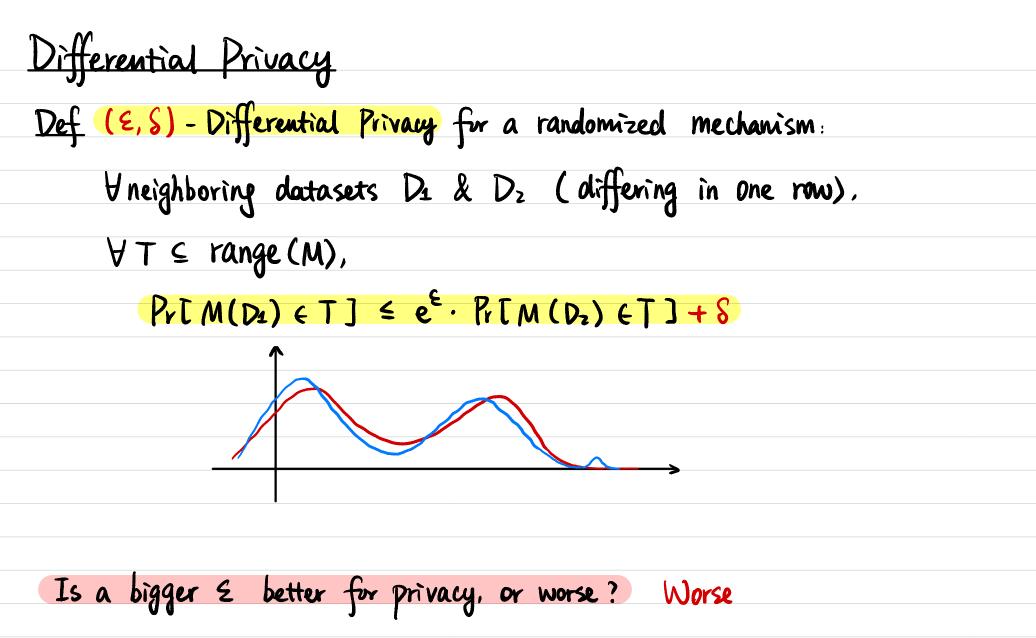
an individual compared to one without access.

with access to the output computed on

a database without the individual.

ifferential Privacy 1/1 1/2 randomized

Def E-Differential Privacy for a randomized mechanism: Uneighboring datasets D1 & D2 (differing in one row). $\forall T \subseteq range(M),$ $Pr[M(D_1) \in T] \leq e^{\epsilon} \cdot Pr[M(D_2) \in T]$

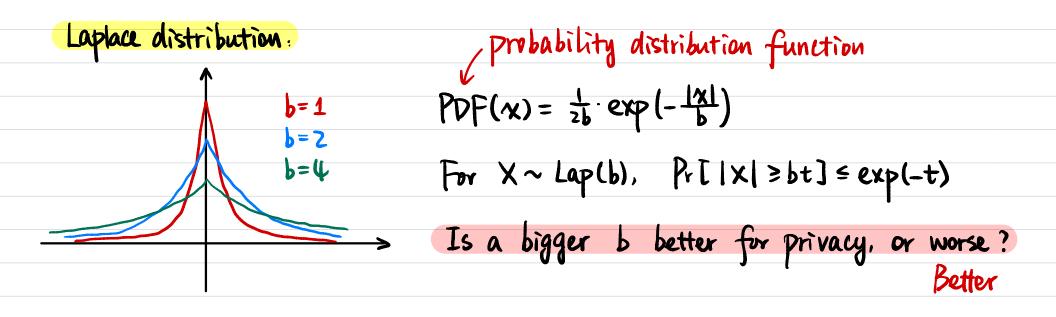


Is a bigger S better for privacy, or worse? Worse

Randomized Response of individuals satisfy predicate P?
Counting query: What percentage of individuals satisfy predicate P?
For each row Xc.
O Sample
$$b \stackrel{\pm}{=} \$_0, 1$$
?
O If $b = 0$, then $y_1 := P(X_1)$
Otherwise, $y_1 \stackrel{\pm}{=} \$_0, 1$?
M(D):= $(y_1, y_2, \dots, y_n) \leftarrow \text{fraction of } 1s = p$
Thm Randomized Response is $\ln 3 - \text{OP}$.
How to estimate the query output?
 $\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \alpha = \beta \implies \alpha = (\beta - \frac{1}{4}) \cdot 2$
How to make the mechanism more private?
 $1 \stackrel{\circ}{=} \frac{107}{107}$

Laplace Mechanism
Def Sensitivity of a function
$$f: X^n \rightarrow \mathbb{R}$$

 $\Delta f := \max_{D_2 \sim D_2} |f(D_2) - f(D_2)|$
Laplace Mechanism; $M(D) = f(D) + Lap(sf/\epsilon)$
Thus. The Laplace Mechanism is $\epsilon - Dp$.



Composition Theorems

Thm (post-processing) If
$$M: X^n \rightarrow Y$$
 is $(\xi, \xi) - DP$.
 $f: Y \rightarrow Z$ is an arbitrary randomized function,
then $f \cdot M: X^n \rightarrow Z$ is also $(\xi, \xi) - DP$.

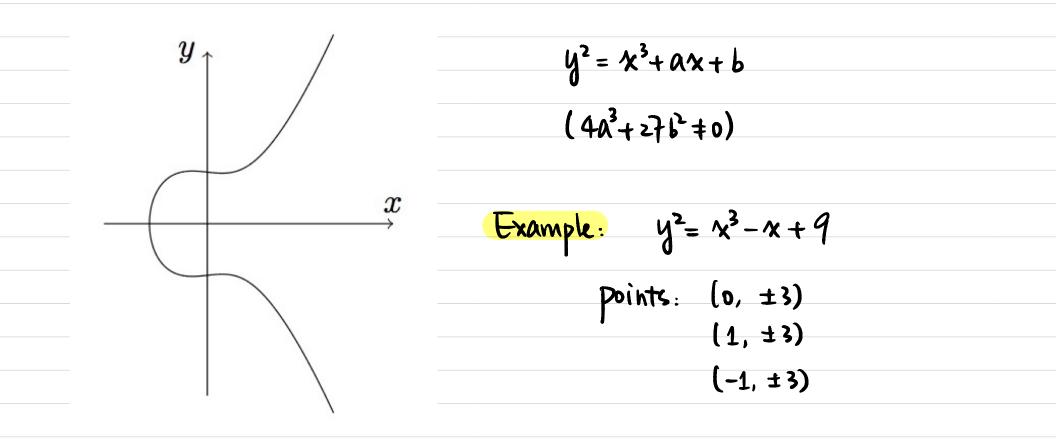
Thus (group privacy) If
$$M: X^n \rightarrow Y$$
 is $(\xi, 0) - DP$.
then M is $(k \cdot \xi, 0) - DP$ for groups of size k.

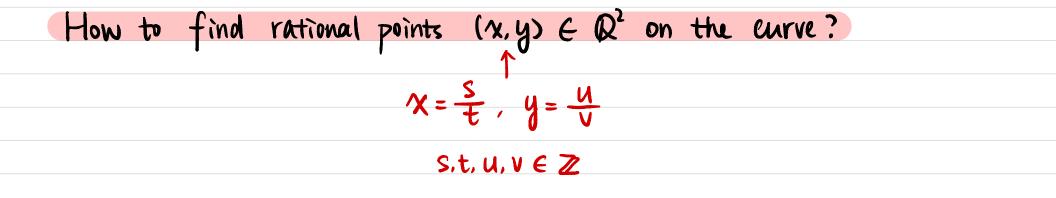
Thm (composition) If
$$Mi: X^n \rightarrow Y$$
 is $(\xi_i, \xi_i) - DP$ $\forall i \in [k],$
then $M(D) := (M_1(D), \dots, M_k(D))$ is $(\sum_{i \in [k]} \xi_i, \sum_{i \in [k]} \xi_i) - DP$

Elliptic Curve Cryptography Cyclic group & of order & with generator & where DLOG/CDH/DDH holds. T How large is &? (128-bit security)

- · Integer groups: q~2048 bits
- · Elliptic Curve groups: 9 ~ 256 bits

Additional structure: bilinear pairings





Elliptic Curves

