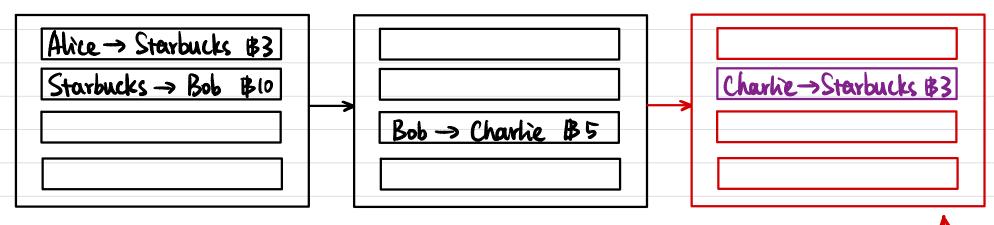
CSCI 1515 Applied Cryptography

This Lecture:

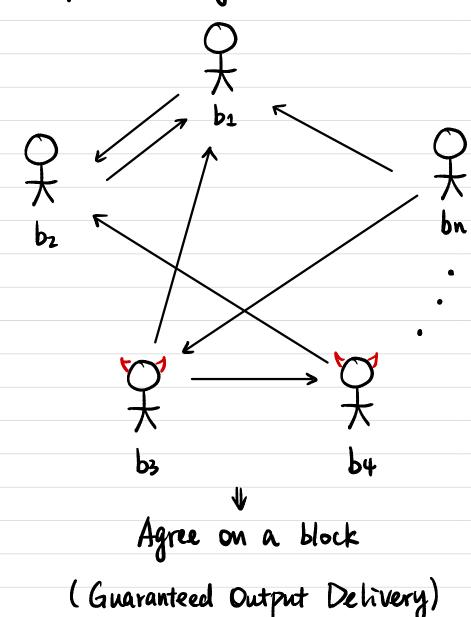
- · Blockchain (Continued)
- · Differential Privary
- · Privacy in ML

Blockehain



- · Public ledger that everyone can view & verify
- · Maintained by "miners" in a distributed way
- Step 1: Charlie wants to make a transaction Charlie-Starbucks \$3
- Step 2: All miners collect all transactions in the network
 - Verify validity (Dinitiated by sender & How? 2 enough balance in sender's account
 - Agree on next block-
- Step 3: Repeat

Byzantine Agreement



Byzantine Fault Tolerance (BFT) Protocol:

necessary

If n = 3t+1,

then it's possible to reach consensus.

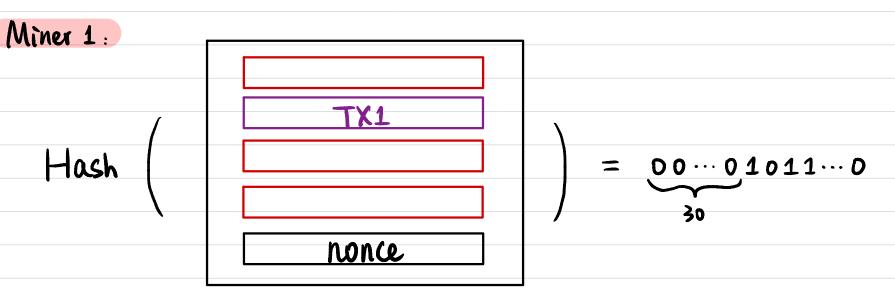
Assume t< n/z, then agree on a valid block.

Any problem?

♀ … ♀ … ♀

Sybil Attack

Proof of Work (POW)

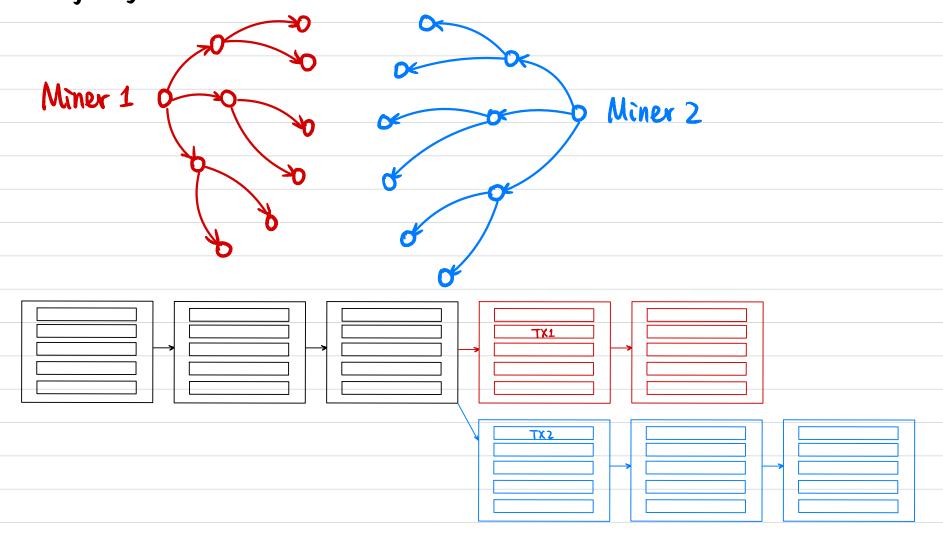


Find nonce sit. Hash (block) has \geq 30 leading 0's.

Consensus Protocol:

Whoever first finds a block that hashes to a value $w/ \ge 30$ leading 0's, that block becomes the next block.

Proof of Work (POW)



Longest Chain Rule: Always adopt the longest Chain.

Assuming honest majority of computation power, the longest chain is always valid.

Extensions

- Smart Contracts
- Proof of Stake (PoS)
- Anonymous transactions (zk-SNARGS)
- Public bulletin board

Differential Privacy

Name	Age	Gender	Race	Weight	ZIP	Disease
Alice						
Вор						
Charlie						
David						
Emily					_	
Fiona						

Want to make the (sensitive) data public / available to others (e.g. for medical study).

Attempt 1: "Anonymize" the dota.

Delete personally identifiable information (PII): name, DOB, ...

Attempt 2: Only answer aggregate statistics queries.

Privacy Guarantee?

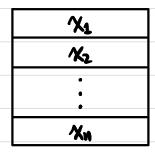
Access to the output shouldn't enable one to learn anything about an individual compared to one without access.

With access to the output computed on a database without the individual.

Is this possible?

Privacy vs. Utility

Differential Privacy



$$D \in X^n \longrightarrow M(D)$$

Def E-Differential Privacy for a randomized mechanism:

Uneighboring datasets D1 & D2 (differing in one row).

 $\forall T \subseteq range(M),$

Pr[M(D1) & T] & e Pr[M(D2) & T]

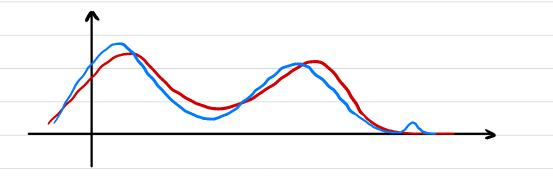


Differential Privacy

Def (E,S) - Differential Privacy for a randomized mechanism:

 \forall neighboring datasets D_1 & D_2 (differing in one row). \forall $T \subseteq \text{range}(M)$,

Pr[M(Dz) & T] & e · Pr[M(Dz) & T] + 8



Is a bigger & better for privacy, or worse? Worse

Is a bigger S better for privacy, or worse? Worse

Randomized Response

Counting query: What percentage of individuals satisfy predicate P?

For each row Xi:

0 Sample b € {0,1}

② If b=0, then y':= P(xi)
Otherwise, yi ← {0,1}

 $M(D) := (y_1, y_2, \dots, y_n)$

Thm Randomized Response is ln 3 - DP.

How to make the mechanism more private? Flip a biased coin in O

How to estimate the query output?

$$\mathbb{E}[\#1's] = \frac{1}{2} \cdot \alpha \cdot N + \frac{1}{2} \cdot \frac{1}{2} \cdot N \approx \frac{k}{N}$$

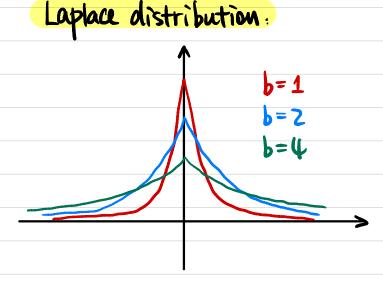
Laplace Mechanism

Def Sensitivity of a function
$$f: X^n \rightarrow \mathbb{R}$$

$$\Delta f := \max_{D_2 \sim D_2} |f(D_2)| - f(D_2)|$$

Laplace Mechanism: $M(D) = f(D) + Lap(\Delta f/\epsilon)$

Thm The Laplace Mechanism is E-DP.



Lap(b):

$$PDF(x) = \frac{1}{2b} exp(-\frac{|x|}{b})$$

Is a bigger b better for privacy, or worse?

Composition Theorems

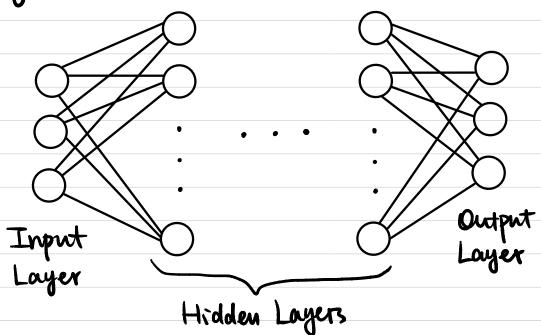
Thm (post-processing) If $M: X^{n} \to Y$ is $(\xi, \delta) - DP$. $f: Y \to Z$ is an arbitrary randomized function, then $f \cdot M: X^{n} \to Z$ is also $(\xi, \delta) - DP$.

Thm (group privacy) If $M: X^N \to Y$ is $(\xi, 0) - DP$. then M is $(k \cdot \xi, 0) - DP$ for groups of size k.

Thm (composition) If $Mi: X^n \rightarrow Y$ is $(\xi_i, \xi_i) - DP$ $\forall i \in [k]$,

then $M(D) := (M_1(D), \dots, M_k(D))$ is $(\xi_i) \in [k] \in [k]$.

Privacy in ML



Each node in hidden layers: linear function + activation function

Data points (xi, yi)

ML modul: weights w

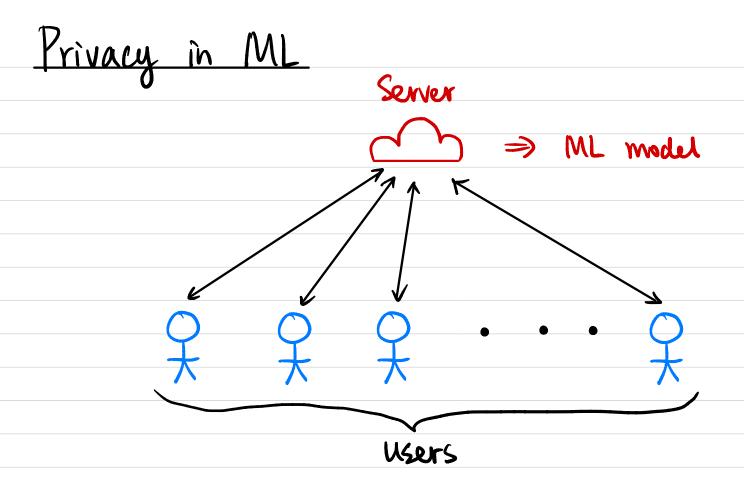
Loss function Li(w)

Stochastic Gradient Descent (SGD).

- w initialized randomly
- Each iteration:

$$\vec{W} \leftarrow \vec{W} - \eta \cdot \nabla Li(\vec{W})$$

$$\vec{W} \leftarrow \vec{W} - \frac{\eta}{B} \cdot \sum_{i \in [B]} \nabla Li(\vec{W})$$



- · Does the model (updates) contain private information?
- · Secure inference / training?
- · Data deletion from trained model?