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Overview



● Focused on advanced/ novel cryptography and applications
○ Secure Multiparty Computation
○ Fully Homomorphic Encryption
○ Etc.

Private Computing Team/ Privacy Research



● Information Security Engineering (ISE)
○ Security/ Design reviews for products
○ Common cryptographic libraries such as Tink

● BoringSSL
○ Make OpenSSL safe and “boring”

● Key storage and management systems
○ Manage key storage, rotation, access control

● Many product teams

Other Cryptography teams



● Examples of deployments of MPC in practice
○ Secure Aggregation for Federated Learning
○ (if time) Exposure Notifications - Private Analytics

● Insights from ISE
○ Making Crypto easier to use correctly
○ Key management and rotation

● Overall:
○ Challenges, insights and lessons learned from deploying cryptography in practice

In this talk



MPC Overview



Different settings for MPC

Businesses/
large parties

User to Server
Multiple users to 

Server



Business-to-Business

● Private Set Intersection
● Collaborative Private Statistics
● Private auctions
● …

Examples

Businesses/
large parties



User to Server:

● Private Contact Discovery
● Private Information Retrieval
● …

Examples

User to Server



Multiple users to Server(s):

● Collaborative ML
● Private metric collection
● …

Examples

Multiple users to 
Server



Multiple users to Server(s):

● Collaborative ML
● Private metric collection
● …

Examples

Multiple users to 
Server



Challenges in deploying MPC

● Costs: 
○ Communication, Computation

■ Generic protocols are common in the literature, but very expensive
■ “Tailored” protocols can be very helpful

○ Engineering Costs
■ Scalability, complex system architecture
■ Coordination across organization boundaries

○ Specialized Knowledge
● But, strong privacy and security guarantees

○ Relying only on cryptography, not on the security of any particular trusted environment



Secure 
Aggregation for 
Federated 
Learning

“Practical Secure Aggregation for Privacy-Preserving Machine Learning”
K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan 
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, Karn Seth.
CCS 2017 



Federated learning is the problem of training a shared global model under the 
coordination of a central server, from a federation of participating devices which store 
their training data locally.

Federated Learning 

 



Cloud-Hosted
Machine Learning

Server collects training data 
from clients, and trains a neural 
network on collected data.



Mobile 
Device

Local 
Training 
Data

Federated Learning

Current Model 
Parameters

1. Server selects a sample of 
e.g. 1000 online devices.



Federated Learning

2. Selected devices download 
the current model parameters.



Federated Learning

3. Users run stochastic 
gradient descent on local 
training data



Federated Learning

4. Server aggregates 
users' updates into a 
new model.

Repeat until convergence.

∑



Federated Learning

Might these updates 
contain privacy-sensitive 
data?



Wouldn't it be great if...

∑

Server aggregates users' 
updates, but cannot inspect 
the individual updates.



Wouldn't it be also great if...

● We could do this without too much additional cost?
○ At most 2x communication increase for clients

● We could do this scalably?
○ Handle 1000s of clients submitting values?

● We could do this reliably?
○ Handle dropouts, errors



Secure Aggregation.



The problem.

Server should learn sum of 
inputs, but not individual inputs.

Xa+Xb+Xc

Xa

∑

Xc

Xb



The problem.

Server should learn sum of 
inputs, but not individual inputs.

Xa+Xb+Xc

Xa

∑

Xc

Xb

Vector size:
 106 elements



Secure Aggregation.
Existing protocols either:

Transmit 
a lot of data

Fail when 
users drop out

(or both)

A novel protocol for



Alice

Bob

Carol

Random positive/negative pairs, aka antiparticles

Devices cooperate to sample random 
pairs of 0-sum masking vectors.

Matched pair sums to 0



Alice

Bob

Carol

Random positive/negative pairs, aka antiparticles

Devices cooperate to sample random 
pairs of 0-sum masking vectors.



Alice

Bob

Carol

Add antiparticles before sending to the server

Each contribution looks 
random on its own...
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The antiparticles cancel when summing contributions
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+

+

but paired masks cancel out 
when summed.

Each contribution looks 
random on its own...

+
∑

Alice

Bob

Carol



Revealing the sum.
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but paired masks 
cancel out when summed.

Each contribution looks 
random on its own...
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Bob

Carol



But there are two problems...



Carol

1. These vectors are big!  
   How do users agree efficiently? 

Alice

Bob



2. What if someone drops out? 
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Carol
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That's 
bad.

2. What if someone drops out? 

∑

Alice

Bob

Carol



Alice

Bob

Carol

Pairwise Diffie-Hellman Key Agreement

a

b

Safe to reveal
(cryptographically 

hard to infer secret)

Secret

Public parameters: g, (mod p)
c

gc

ga

gb



Alice

Bob

Carol

ga

gb

gc

a

b

Broadcast via the server

c

Pairwise Diffie-Hellman Key Agreement
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Pairwise Diffie-Hellman Key Agreement
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gba

gab

c
gac

gca

gcb

gbc

a

b

Secrets are scalars, but….

  Shared secret!

Pairwise Diffie-Hellman Key Agreement
Alice

Bob

Carol



gba

gab

c
gac

gca

gcb

gbc

a

b

Secrets are scalars, but….

Use each secret to seed a 
pseudorandom number generator,
generate paired antiparticle vectors.

PRNG(gba) →       = -   Shared secret!

Pairwise Diffie-Hellman Key Agreement + PRNG Expansion
Alice

Bob

Carol



a

b

c

1. Efficiency via pseudorandom generator

2. Mobile phones typically don't support 
peer-to-peer communication anyhow.

3. Fewer secrets = easier recovery.

Pairwise Diffie-Hellman Key Agreement + PRNG Expansion

Secrets are scalars, but….

Use each secret to seed a 
pseudorandom number generator,
generate paired antiparticle vectors.

PRNG(gba) →       = -

Alice

Bob

Carol
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That's 
bad.

2. What if someone drops out? 

∑

Alice

Bob

Carol



k-out-of-n Threshold Secret Sharing
Goal: Break a secret into n pieces, called shares.  
● <k shares: learn nothing
● ≥k shares: recover s perfectly.

s

2-out-of-3 secret sharing:

Each point on the 
line is a share

y-intercept is the secret



k-out-of-n Threshold Secret Sharing
Goal: Break a secret into n pieces, called shares.  
● <k shares: learn nothing
● ≥k shares: recover s perfectly

? ? ?



k-out-of-n Threshold Secret Sharing
Goal: Break a secret into n pieces, called shares.  
● <k shares: learn nothing
● ≥k shares: recover s perfectly

ss s
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a

b

Users make shares of their secrets 
Alice

Bob

Carol



Alice

Bob

Carol

c

a

b

And exchange with their peers
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Enough honest users + a high enough threshold
   ⇒ server + dishonest users cannot reconstruct the secret.
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Security and Robustness

Threat Model
Minimum 
Threshold

Minimum
 Inputs In Sum

Maximum 
Dropouts

Client-only Adversary 2 threshold n - threshold

Server-only Adversary  n/2  + 1 threshold n - threshold

Server-Clients Collusion
(#corrupt <  n/3 )

 2n/3  + 1 threshold - #corrupt n - threshold

Security is against Honest-But-Curious or against Active adversaries

Protection against malicious server 
requires Public Key Infrastructure 
or honest Diffie-Hellman exchange

Implementer's Choice



# Parameters Bits/Parameter # Users
Bandwidth
Expansion

220 = 1 m 16 210 = 1 k 1.73x

224 = 16 m 16 214 = 16 k 1.98x

Communication Efficient:

Robust:

Secure:

Completes even if ⅓ of clients drop out during protocol; 
secure no matter how many drop out.

Provably secure against a wide range of honest-but-curious 
and active adversaries.

e.g.: secure for an adversary fully observing the server and 
having complete control of up to ⅓ of the clients



Performance

Communication per client:
Less than 2x expansion over sending in the clear



Secure Aggregation.
Our protocol does not:

Transmit 
a lot of data

Fail when 
users drop out

A novel protocol for



● Client input validation

● Weakening “PKI” assumptions for malicious servers

Future Work

+ + + + +

Detect if one client 
attempts to garble the 
output



Scaling exchange

As the number of clients becomes large, exchanging 
masks between all pairs becomes expensive:

- High communication
- High computation (PRNG expansions)

Alice

Bob

Carol



Scaling exchange

As the number of clients becomes large, exchanging 
masks between all pairs becomes expensive:

- High communication
- High computation (PRNG expansions)

Follow-up work* shows how to allow clients to 
communicate with a logarithmic-sized subset of other 
clients, while preserving

- Robustness to dropouts
- Security against malicious subsets of clients

*“Secure Single-Server Aggregation with 
(Poly)Logarithmic Overhead”
James Bell, K. A. Bonawitz, Adrià Gascón, Tancrède 
Lepoint, and Mariana Raykova

Alice

Bob

Carol



- Clients need to perform many PRG expansions
- One idea: use a key-homomorphic PRG
- Allows adding together many keys, and doing a 

single PRG expansion
- Can greatly reduce the computational work per 

client, especially as the number of pairs grows.

Further reducing computational complexity



- The more clients, the longer the protocol may take
- Higher variance in client response time

- Can we allow clients to come back later?
- Can we create a streaming cohort?

- Continuous stream of users who join and leave the 
aggregation?

Scaling the system: future questions



“Standard” 
cryptography and
Key Management

Slides courtesy of Sophie Schmieg and Stefan Kölbl, 
Presented at Real World Crypto 2023



Tink: What is it?

● Open-source cryptographic library
● Designed to be hard-to-misuse
● Born out of many, many  product reviews
● Seeing common mistakes, errors in crypto use, …



Hard-to-use interfaces (E.g. OpenSSL)



But also, how to manage keys?

● How and where to store keys?
● How to make them available to services reliably?
● How to rotate them?
● How to enable changing schemes (e.g. to post-quantum-secure)?



“Fancy Crypto turns every problem into a Key Management problem”

- Sophie Schmieg, ISE Crypto Lead



87

Crypto Agility at Google

Enforce best 
practices

Don’t burden 
the user

Reliability



88

Best practice – Key rotation

Key rotation should happen automatically

● Forward secrecy.

● Enables speedy recovery from compromise at low operational risk.

● Simplifies switching keys ⇒ Transition to post-quantum crypto

In practice hard to enforce:

● Reliability risks



89

User Perspective – Setup

Customer responsibility:

● Key type (e.g. AEAD), Key format (e.g. AES-GCM)

● TTL of ciphertext (e.g. 90 days, 1 year, …)

● Cache time for a key (e.g. 1 day)

KMS takes care of:

● Generating, distributing and rotating key material.



9090

User Perspective – Using keys
Two simple steps:

1) Retrieve key from KMS: key={             ,            ,             }

○ Key usage authenticated and authorized based on service 

identities.

○ Binary authorization (BAB).

2) Use key in cryptographic library: 

○ key.encrypt("message")



9191

User Perspective - Using keys
Abstraction in cryptographic library (Tink) handles:

● Which key inside the keyset to use.

● Refreshing key material on a regular schedule.

● Keyset can have keys of different format.



9292

Lifetime of a key

Source: NIST SP 800-57pt1

Pre-activation:

● Key material has been generated.

● Not actively being used.

Problem:
When is it safe to make the key active?



9393

Lifetime of a key

Source: NIST SP 800-57pt1

Active

● Key used for encryption or signing.

Problem:
Need to ensure that all other users have 
the key.



9494

Lifetime of a key

Source: NIST SP 800-57pt1

Suspended / Deactivated

● Key only used for decryption / 
verification.

Problem:
When can we delete that key?
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{    ,    ,     }
{    ,    ,     }
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{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

{      ,       ,      }

Key management ⇔ a large scale distributed system problem.
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Service A

Service B

1) Fetch key = {      ,       ,       }
2) signed_url = key.sign("url")

1) Fetch key = {      ,       ,       }
2) Receives signed_url
3) key.verify(sig, "url")

User

1) Accesses signed_url

Verification fails

What can go wrong in practice?
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Scale of the problem
Google has thousands of teams with:

● Different release schedules.

● Different use cases and needs.

● Usage from highly infrequent to billion queries / day.

Need solution which can handle all these different factors.
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Monitoring in the cryptographic library

Goals

● Do not burden users to keep track of their key usage.

● Add minimal overhead to cryptographic operations.

⇒ Horizontally monitor usage of cryptographic key material within 

our libraries.



100

Monitoring in the cryptographic library

Large data 

volume
Latency Integration in 

crypto 
libraries
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Monitoring in the cryptographic library
Service A
…
std::unique_ptr<Key> key = kms.FetchKey("urlsigner");
std::string sig;
sig = key->Sign("msg");
…

Service B
…
key = kms.fetchkey('urlsigner')

sig = key.verify('msg', sig)

…

KeyName Service Name API Key Version …

urlsigner A sign 3 …

urlsigner B verify 3 …
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Monitoring in the cryptographic library
Allows to have reliable key rotation by the KMS

● Monitoring provides data points to inform key rotation:

○ When is it safe to make key active?

○ When can we delete a key?

● Notify teams if they violate their contract.

● Can block key deletion if it is still actively being used.
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Monitoring in the cryptographic library
Allows us to:

● Enforce best practices across our services.

● Find keys which are used beyond their security bounds (e.g. GCM 

keys encrypting more than 232 messages).

● Find usage of legacy keys and guide deprecation.

● Get usage data on migration from one algorithm to another…



104

Takeaways
● Reliably managing keys at scale is challenging
● Stakes are high: no key, no services
● Not thinking ahead accrues heavy technical debt in the future

○ If you can’t rotate keys, hard to do it when you have to



Thank you!



Questions?



ENPA

Slides courtesy of Mariana Raykova
Presented at Real World Crypto ‘22



Two strangers, Alice and Bob, having a 
long conversation.

Their phones exchange 
non-identifiable Bluetooth beacons, 
which change frequently.

Bob is positively diagnosed for 
COVID-19.

With Bob’s consent, his phone 
uploads the last 14 days of his 
Bluetooth exposure keys to the 
server.

Key Key

15
min

15
min

A few days later…

Positive
Test

Submit

~14 day temporary store

1
0
8



Alice receives a notification on her 
phone.

Alice continues her day unaware 
she had been near a potentially 
contagious person.

Alice’s phone periodically match against 
non-identifiable downloaded beacons of 
COVID-19 positive persons in her region.

The notification includes information 
about what to do next.

A match is found

ALERT:  You have recently come in 
contact with someone who has 
tested positive for Covid-19

Tap for more information -->

Sometime later…

Additional information and 
guidance is provided by the 
public health authority

1
0
9



Exposure Notifications: Privacy Principles

Opt-In
Required for enabling Exposure Notification

Required prior to uploading exposure keys to the Health Authority Key Server

No Linkable or Persistent Identifiers
Local observers should not be able to track users who never report positive

No Centralized Social Graph
Reported keys are downloaded and all matching for scanned Bluetooth beacons for any 

exposure events, are done on device

110



Problem:
How to get feedback to tune epidemiological 
parameters and evaluate effectiveness while 

upholding the privacy principles?

111



How many notifications are displayed per reported diagnosis? 

How many people who received a notification end up 
reporting a positive diagnosis?

112



If we raised the risk threshold, how many more people would 
receive notifications?

If we lowered the risk threshold, how many people would be 
infected but not receive a notification?

113



Exposure Notifications Private Analytics Goals

Upholding Exposure Notification Privacy Principles
Aggregated Metrics

Individual contributions are not available and cannot be inferred

For Health Authorities
Only the Health Authorities have access to the aggregated metrics
Apple and Google servers don’t learn individual contribution or aggregated metric 

Robustness
No single user should be able to skew the result

Easy to Use and Understand
Provide an easy to use web portal to help health authorities make informed decisions about Exposure Notifications

Common Solution across Google and Apple

114



Agenda

Exposure Notifications (EN)

Exposure Notifications Private Analytics (ENPA)

Instantiation and Deployment of ENPA

Challenges and Recommendations

115



Prio

Prio: Private, Robust, and Scalable 
Computation of Aggregate Statistics
Henry Corrigan-Gibbs, Dan Boneh, NSDI 2017 

Properties
● Multiparty aggregation system
● Protect individual user contributions
● Can be combined with differential privacy
● A malicious user can at most lie about 

their input
Real World Crypto 2020

https://rwc.iacr.org/2020/slides/Gibbs.pdf

116



Prio System Architecture

.

.

.

User Devices Aggregation Servers

Aggregate 
output

Non-collusion 
assumption 

among servers

117



(   0   ,   0   ,   0   ,   1   ,   0   ) 

Prio User Input
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y 4
Fixed-size 
bit-vector 

representing the 
metric of interest
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Prio Secret Sharing

( r1 , r2 , r3 , r4 , r5 ,  …
  ), π 

Compute secret shares
ri random in Zp, r’i = bi - ri (mod p)

Compute validity proofs: π and π’
Show the input vector is binary: bi(1-bi) ≡ 0

( r’1  , r’2  , r’3  , r’4  , r’5  ,  …  ), π’ 
(   0   ,   0   ,   0   ,   1   ,   0   ) 

Secret share the 
input vector and 
prove that it is a 

bitvector
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Prio Secure Aggregation

Compute secret shares
ri random in Zp, r’i = bi - ri (mod p)

Compute validity proofs: π and π’
Show the input vector is binary: bi(1-bi) ≡ 0

(S1 = ∑ r1, S2 = ∑ r2, …) 

Jointly verify 
proofs

(S’1 = ∑ r’1, S’2 = ∑ r’2, … ) 

Output (mod p)
S1+S’1, S2+S’2, S3+S’3, 
…

S1, S2, S3, ...( r1 , r2 , r3 , r4 , r5 ,  …
  ), π 

S’1, S’2, S’3, ...
(   0   ,   0   ,   0   ,   1   ,   0   ) 

( r’1  , r’2  , r’3  , r’4  , r’5  ,  …  ), π’ 

Sum (mod p) 
vector shares 
with verified proofs

Aggregate valid 
secret shares
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Differential Privacy in Prio

Flip each input bit with small probability 𝛼
apply amplification by shuffling to determine DP guarantees

Compute secret shares

Compute validity proofs

( r1 , r2 , r3 , r4 , r5 ,  …
  ), π 

(   0   ,   0   ,   0   ,   1   ,   0   ) 

(S1 = ∑ r1, S2 = ∑ r2, …) 

Jointly verify 
proofs

(S’1 = ∑ r’1, S’2 = ∑ r’2, … ) 

Output (mod p)
S1+S’1, S2+S’2, S3+S’3, …

S1, S2, S3, ...

S’1, S’2, S’3, ...

( r’1  , r’2  , r’3  , r’4  , r’5  ,  …  ), π’ 

Sum (mod p) 
vector shares 
with verified proofs
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Private Analytics: Meeting Design Goals

Data Privacy, Data Minimization, Data Integrity

Prio with non-colluding servers: aggregated and differentially private data

Well-defined metrics to answer health authorities questions 

Validity proofs, device attestation

Efficiency

One-shot protocol for devices, one round of communications between aggregation servers

Common Solution across Google and Apple

Prio (published at NSDI 2017; presented at RWC 2020)
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Agenda

Exposure Notifications (EN)

Exposure Notifications Private Analytics (ENPA)

Instantiation and Deployment of ENPA

Challenges and Recommendations
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Instantiation of Prio for ENPA: a lot of moving parts

Parties Running Non-colluding Servers

Establishing Trust

Multi-Cloud Solution

Ingestion Servers

Aggregating over Time Windows 

ENPA Health Authority Consent

ENPA User Consent

Device Attestation

Communication via Storage Buckets

Kubernetes Clusters

Cloud Identity Federation

Code Development

Serialization Format

Data Alignment

Parameter Choices

Differential Privacy Trade-offs
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US deployment

Non-colluding Aggregation Servers
Servers built on Kubernetes and 

running on two distinct cloud providers

Web Portal
Data access and graphical representations 

of the differentially-private aggregates 
for all state health authorities

The MITRE Corporation 
Not-for-profit organization

Internet Security Research Group 
California public benefit corporation for 
digital infrastructure projects, operators 
of Let's Encrypt

National Cancer Institute (NCI) 
at the National Institutes of 
Health (NIH)
Agency of the U.S. Department of 
Health and Human Services
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Role of the ingestion servers 
run by Apple and Google

Always-online

Drop metadata (IP address, time)  

Check device attestation (OS-specific)

Align the data (i.e., contribution 
forwarded to both aggregation servers)

Batch and reorder multiple contributions

Authenticate batches

Generate random point for polynomial 
identity test

Ingestion Servers

Ingestion Server

✉1=Enc(PK, share, proof)

✉2=Enc(PK’, share’, proof’)

✉1 ✉2 ✉
1
✉

1
✉

1
✉
2
✉
2
✉
2

Storage 
Buckets

Aggregation
Servers

Decrypt
Process...

Decrypt
Process...

ISRG

NCI
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Asynchronous System

Data Collection
Receive continuous data from clients
Drop metadata
Periodically write shuffled batches of valid 
contributions to shared storage buckets

Data Aggregation
Periodically read data from shared storage
Decrypt, verify proofs, aggregate shares 
Send aggregate parts to MITRE every 8 hours

Jointly verify 
proofs

Aggregate 

shares

Aggregate 
shares

NCI

ISRG

MITRE

Data Consumption
Sum aggregate parts over 24h
Provide UI for PHAs to access the 
aggregate data

MITRE

PHA
User 
Interface✉

1✉
1✉

1

✉ 2✉ 2✉ 2

ISRG

NCI

✉1 ✉2

✉1 ✉2

✉1 ✉2

✉1 ✉2

✉1 ✉2

✉1 ✉2
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iOS 
phone

Android
phone

Apple 
Ingestion

Server

Google 
Ingestion

Server

ISRG
Server

NIH
Server

MITRE
Server
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ENPA Consent 

PHA consent 

Each state public health authority (PHA) 
needs to elect to activate ENPA, by signing a 
contract with MITRE

User Consent

Each user consents to contribute their data 
to ENPA
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Current Deployment

First deployment: December 2020

ENPA is used in 15 US states and 4 
Mexican states. 9 metrics are collected 
and the aggregation servers process 
millions of contributions daily.

https://www.doh.wa.gov/Newsroom/Articles/ID/2827/Researchers-from-UW-
and-DOH-find-WA-Notify-exposure-notification-tool-is-saving-lives
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