
Deploying Cryptography in Practice
Karn Seth <karn@google.com>

Overview

● Focused on advanced/ novel cryptography and applications
○ Secure Multiparty Computation
○ Fully Homomorphic Encryption
○ Etc.

Private Computing Team/ Privacy Research

● Information Security Engineering (ISE)
○ Security/ Design reviews for products
○ Common cryptographic libraries such as Tink

● BoringSSL
○ Make OpenSSL safe and “boring”

● Key storage and management systems
○ Manage key storage, rotation, access control

● Many product teams

Other Cryptography teams

● Examples of deployments of MPC in practice
○ Secure Aggregation for Federated Learning
○ (if time) Exposure Notifications - Private Analytics

● Insights from ISE
○ Making Crypto easier to use correctly
○ Key management and rotation

● Overall:
○ Challenges, insights and lessons learned from deploying cryptography in practice

In this talk

MPC Overview

Different settings for MPC

Businesses/
large parties

User to Server
Multiple users to

Server

Business-to-Business

● Private Set Intersection
● Collaborative Private Statistics
● Private auctions
● …

Examples

Businesses/
large parties

User to Server:

● Private Contact Discovery
● Private Information Retrieval
● …

Examples

User to Server

Multiple users to Server(s):

● Collaborative ML
● Private metric collection
● …

Examples

Multiple users to
Server

Multiple users to Server(s):

● Collaborative ML
● Private metric collection
● …

Examples

Multiple users to
Server

Challenges in deploying MPC

● Costs:
○ Communication, Computation

■ Generic protocols are common in the literature, but very expensive
■ “Tailored” protocols can be very helpful

○ Engineering Costs
■ Scalability, complex system architecture
■ Coordination across organization boundaries

○ Specialized Knowledge
● But, strong privacy and security guarantees

○ Relying only on cryptography, not on the security of any particular trusted environment

Secure
Aggregation for
Federated
Learning

“Practical Secure Aggregation for Privacy-Preserving Machine Learning”
K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, Karn Seth.
CCS 2017

Federated learning is the problem of training a shared global model under the
coordination of a central server, from a federation of participating devices which store
their training data locally.

Federated Learning

Cloud-Hosted
Machine Learning

Server collects training data
from clients, and trains a neural
network on collected data.

Mobile
Device

Local
Training
Data

Federated Learning

Current Model
Parameters

1. Server selects a sample of
e.g. 1000 online devices.

Federated Learning

2. Selected devices download
the current model parameters.

Federated Learning

3. Users run stochastic
gradient descent on local
training data

Federated Learning

4. Server aggregates
users' updates into a
new model.

Repeat until convergence.

∑

Federated Learning

Might these updates
contain privacy-sensitive
data?

Wouldn't it be great if...

∑

Server aggregates users'
updates, but cannot inspect
the individual updates.

Wouldn't it be also great if...

● We could do this without too much additional cost?
○ At most 2x communication increase for clients

● We could do this scalably?
○ Handle 1000s of clients submitting values?

● We could do this reliably?
○ Handle dropouts, errors

Secure Aggregation.

The problem.

Server should learn sum of
inputs, but not individual inputs.

Xa+Xb+Xc

Xa

∑

Xc

Xb

The problem.

Server should learn sum of
inputs, but not individual inputs.

Xa+Xb+Xc

Xa

∑

Xc

Xb

Vector size:
 106 elements

Secure Aggregation.
Existing protocols either:

Transmit
a lot of data

Fail when
users drop out

(or both)

A novel protocol for

Alice

Bob

Carol

Random positive/negative pairs, aka antiparticles

Devices cooperate to sample random
pairs of 0-sum masking vectors.

Matched pair sums to 0

Alice

Bob

Carol

Random positive/negative pairs, aka antiparticles

Devices cooperate to sample random
pairs of 0-sum masking vectors.

Alice

Bob

Carol

Add antiparticles before sending to the server

Each contribution looks
random on its own...

++

+

+

+

+

The antiparticles cancel when summing contributions

++

+

+

+

but paired masks cancel out
when summed.

Each contribution looks
random on its own...

+
∑

Alice

Bob

Carol

Revealing the sum.

++

+

but paired masks
cancel out when summed.

Each contribution looks
random on its own...

+

+

+
∑

Alice

Bob

Carol

But there are two problems...

Carol

1. These vectors are big!
 How do users agree efficiently?

Alice

Bob

2. What if someone drops out?

++

+

+

+

+
∑

Alice

Bob

Carol

++

++

That's
bad.

2. What if someone drops out?

∑

Alice

Bob

Carol

Alice

Bob

Carol

Pairwise Diffie-Hellman Key Agreement

a

b

Safe to reveal
(cryptographically

hard to infer secret)

Secret

Public parameters: g, (mod p)
c

gc

ga

gb

Alice

Bob

Carol

ga

gb

gc

a

b

Broadcast via the server

c

Pairwise Diffie-Hellman Key Agreement

Alice

Bob

Carol

ga

gc

a

b

c

Pairwise Diffie-Hellman Key Agreement

ga

gb

gc

gb

gc

ga

gb

gba

gab

c
gac

gca

gcb

gbc

a

b

Secrets are scalars, but….

 Shared secret!

Pairwise Diffie-Hellman Key Agreement
Alice

Bob

Carol

gba

gab

c
gac

gca

gcb

gbc

a

b

Secrets are scalars, but….

Use each secret to seed a
pseudorandom number generator,
generate paired antiparticle vectors.

PRNG(gba) → = - Shared secret!

Pairwise Diffie-Hellman Key Agreement + PRNG Expansion
Alice

Bob

Carol

a

b

c

1. Efficiency via pseudorandom generator

2. Mobile phones typically don't support
peer-to-peer communication anyhow.

3. Fewer secrets = easier recovery.

Pairwise Diffie-Hellman Key Agreement + PRNG Expansion

Secrets are scalars, but….

Use each secret to seed a
pseudorandom number generator,
generate paired antiparticle vectors.

PRNG(gba) → = -

Alice

Bob

Carol

++

++

That's
bad.

2. What if someone drops out?

∑

Alice

Bob

Carol

k-out-of-n Threshold Secret Sharing
Goal: Break a secret into n pieces, called shares.
● <k shares: learn nothing
● ≥k shares: recover s perfectly.

s

2-out-of-3 secret sharing:

Each point on the
line is a share

y-intercept is the secret

k-out-of-n Threshold Secret Sharing
Goal: Break a secret into n pieces, called shares.
● <k shares: learn nothing
● ≥k shares: recover s perfectly

? ? ?

k-out-of-n Threshold Secret Sharing
Goal: Break a secret into n pieces, called shares.
● <k shares: learn nothing
● ≥k shares: recover s perfectly

ss s

c

a

b

Users make shares of their secrets
Alice

Bob

Carol

Alice

Bob

Carol

c

a

b

And exchange with their peers

Alice

Bob

Carol

c

a

b

And exchange with their peers

++

++

That's
bad.

∑

Alice

Bob

Carol

b?
ga

gb

gc

++

++

∑

Bob

Alice

Carol

gc

ga

gb

++

++

∑

Bob

Alice

Carol

gc

ga++

++

∑
gb

Bob

Alice

Carol

b
gc

ga

gb

++

++

∑

Bob

Alice

Carol

++

++

ga

b
gc

∑

Bob

Alice

Carol

++

++

ga

b
gc

∑

Bob

Alice

Carol

ga

b

Enough honest users + a high enough threshold
 ⇒ server + dishonest users cannot reconstruct the secret.

gc

++

++

∑

Bob

Alice

Carol

ga

b

Enough honest users + a high enough threshold
 ⇒ server + dishonest users cannot reconstruct the secret.

However….

gc

++

++

∑

Bob

Alice

Carol

ga

b + +
late.

gc

++

++

∑

Bob

Alice

Carol

++

++

+ +

ga

b late.

Oops.

gc

∑

Bob

Carol

Alice

++

+

+

+

+

Alice

Bob

Carol

++

+

+

+

+

+

+

+

Alice

Bob

Carol

c

a

b

Alice

Bob

Carol

Alice

Bob

Carol

abc :

abc :

:

abc :

:

:

++

++

+

+

abc :

:

abc :

:

Alice

Bob

Carol

(, b,)?

++

++

+

+

Bob

abc :

:

abc :

:

Alice

Carol

abc :

:

abc :

:

++

++

+

+

Bob

abc :

:

abc :

:

Alice

Carol

++

++

+

+

b

abc :

:

abc :

:

Bob

abc :

:

abc :

:

Alice

Carol

++

++

+

+

b

abc :

:

abc :

:

Bob

abc :

:

abc :

:

Alice

Carol

++

++

+

+

b

abc :

:

abc :

:

Bob

abc :

:

abc :

:

Alice

Carol

abc :

:

abc :

:

b

++

++

+

+

∑

Bob

abc :

:

abc :

:

Alice

Carol

b + ++
late.

++

++

+

+

∑

Alice

Bob

Carol

abc :

abc :

:

abc :

:

:

+ +b late.

++

++

+

+

∑

Permanent.

(honest users
already gave b)

+

Alice

Bob

Carol

abc :

abc :

:

abc :

:

:

Security and Robustness

Threat Model
Minimum
Threshold

Minimum
 Inputs In Sum

Maximum
Dropouts

Client-only Adversary 2 threshold n - threshold

Server-only Adversary n/2 + 1 threshold n - threshold

Server-Clients Collusion
(#corrupt < n/3)

 2n/3 + 1 threshold - #corrupt n - threshold

Security is against Honest-But-Curious or against Active adversaries

Protection against malicious server
requires Public Key Infrastructure
or honest Diffie-Hellman exchange

Implementer's Choice

Parameters Bits/Parameter # Users
Bandwidth
Expansion

220 = 1 m 16 210 = 1 k 1.73x

224 = 16 m 16 214 = 16 k 1.98x

Communication Efficient:

Robust:

Secure:

Completes even if ⅓ of clients drop out during protocol;
secure no matter how many drop out.

Provably secure against a wide range of honest-but-curious
and active adversaries.

e.g.: secure for an adversary fully observing the server and
having complete control of up to ⅓ of the clients

Performance

Communication per client:
Less than 2x expansion over sending in the clear

Secure Aggregation.
Our protocol does not:

Transmit
a lot of data

Fail when
users drop out

A novel protocol for

● Client input validation

● Weakening “PKI” assumptions for malicious servers

Future Work

+ + + + +

Detect if one client
attempts to garble the
output

Scaling exchange

As the number of clients becomes large, exchanging
masks between all pairs becomes expensive:

- High communication
- High computation (PRNG expansions)

Alice

Bob

Carol

Scaling exchange

As the number of clients becomes large, exchanging
masks between all pairs becomes expensive:

- High communication
- High computation (PRNG expansions)

Follow-up work* shows how to allow clients to
communicate with a logarithmic-sized subset of other
clients, while preserving

- Robustness to dropouts
- Security against malicious subsets of clients

*“Secure Single-Server Aggregation with
(Poly)Logarithmic Overhead”
James Bell, K. A. Bonawitz, Adrià Gascón, Tancrède
Lepoint, and Mariana Raykova

Alice

Bob

Carol

- Clients need to perform many PRG expansions
- One idea: use a key-homomorphic PRG
- Allows adding together many keys, and doing a

single PRG expansion
- Can greatly reduce the computational work per

client, especially as the number of pairs grows.

Further reducing computational complexity

- The more clients, the longer the protocol may take
- Higher variance in client response time

- Can we allow clients to come back later?
- Can we create a streaming cohort?

- Continuous stream of users who join and leave the
aggregation?

Scaling the system: future questions

“Standard”
cryptography and
Key Management

Slides courtesy of Sophie Schmieg and Stefan Kölbl,
Presented at Real World Crypto 2023

Tink: What is it?

● Open-source cryptographic library
● Designed to be hard-to-misuse
● Born out of many, many product reviews
● Seeing common mistakes, errors in crypto use, …

Hard-to-use interfaces (E.g. OpenSSL)

But also, how to manage keys?

● How and where to store keys?
● How to make them available to services reliably?
● How to rotate them?
● How to enable changing schemes (e.g. to post-quantum-secure)?

“Fancy Crypto turns every problem into a Key Management problem”

- Sophie Schmieg, ISE Crypto Lead

87

Crypto Agility at Google

Enforce best
practices

Don’t burden
the user

Reliability

88

Best practice – Key rotation

Key rotation should happen automatically

● Forward secrecy.

● Enables speedy recovery from compromise at low operational risk.

● Simplifies switching keys ⇒ Transition to post-quantum crypto

In practice hard to enforce:

● Reliability risks

89

User Perspective – Setup

Customer responsibility:

● Key type (e.g. AEAD), Key format (e.g. AES-GCM)

● TTL of ciphertext (e.g. 90 days, 1 year, …)

● Cache time for a key (e.g. 1 day)

KMS takes care of:

● Generating, distributing and rotating key material.

9090

User Perspective – Using keys
Two simple steps:

1) Retrieve key from KMS: key={ , , }

○ Key usage authenticated and authorized based on service

identities.

○ Binary authorization (BAB).

2) Use key in cryptographic library:

○ key.encrypt("message")

9191

User Perspective - Using keys
Abstraction in cryptographic library (Tink) handles:

● Which key inside the keyset to use.

● Refreshing key material on a regular schedule.

● Keyset can have keys of different format.

9292

Lifetime of a key

Source: NIST SP 800-57pt1

Pre-activation:

● Key material has been generated.

● Not actively being used.

Problem:
When is it safe to make the key active?

9393

Lifetime of a key

Source: NIST SP 800-57pt1

Active

● Key used for encryption or signing.

Problem:
Need to ensure that all other users have
the key.

9494

Lifetime of a key

Source: NIST SP 800-57pt1

Suspended / Deactivated

● Key only used for decryption /
verification.

Problem:
When can we delete that key?

9595

{ , , }
{ , , }

9696

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

{ , , }

Key management ⇔ a large scale distributed system problem.

9797

Service A

Service B

1) Fetch key = { , , }
2) signed_url = key.sign("url")

1) Fetch key = { , , }
2) Receives signed_url
3) key.verify(sig, "url")

User

1) Accesses signed_url

Verification fails

What can go wrong in practice?

98

Scale of the problem
Google has thousands of teams with:

● Different release schedules.

● Different use cases and needs.

● Usage from highly infrequent to billion queries / day.

Need solution which can handle all these different factors.

99

Monitoring in the cryptographic library

Goals

● Do not burden users to keep track of their key usage.

● Add minimal overhead to cryptographic operations.

⇒ Horizontally monitor usage of cryptographic key material within

our libraries.

100

Monitoring in the cryptographic library

Large data

volume
Latency Integration in

crypto
libraries

101

Monitoring in the cryptographic library
Service A
…
std::unique_ptr<Key> key = kms.FetchKey("urlsigner");
std::string sig;
sig = key->Sign("msg");
…

Service B
…
key = kms.fetchkey('urlsigner')

sig = key.verify('msg', sig)

…

KeyName Service Name API Key Version …

urlsigner A sign 3 …

urlsigner B verify 3 …

102

Monitoring in the cryptographic library
Allows to have reliable key rotation by the KMS

● Monitoring provides data points to inform key rotation:

○ When is it safe to make key active?

○ When can we delete a key?

● Notify teams if they violate their contract.

● Can block key deletion if it is still actively being used.

103

Monitoring in the cryptographic library
Allows us to:

● Enforce best practices across our services.

● Find keys which are used beyond their security bounds (e.g. GCM

keys encrypting more than 232 messages).

● Find usage of legacy keys and guide deprecation.

● Get usage data on migration from one algorithm to another…

104

Takeaways
● Reliably managing keys at scale is challenging
● Stakes are high: no key, no services
● Not thinking ahead accrues heavy technical debt in the future

○ If you can’t rotate keys, hard to do it when you have to

Thank you!

Questions?

ENPA

Slides courtesy of Mariana Raykova
Presented at Real World Crypto ‘22

Two strangers, Alice and Bob, having a
long conversation.

Their phones exchange
non-identifiable Bluetooth beacons,
which change frequently.

Bob is positively diagnosed for
COVID-19.

With Bob’s consent, his phone
uploads the last 14 days of his
Bluetooth exposure keys to the
server.

Key Key

15
min

15
min

A few days later…

Positive
Test

Submit

~14 day temporary store

1
0
8

Alice receives a notification on her
phone.

Alice continues her day unaware
she had been near a potentially
contagious person.

Alice’s phone periodically match against
non-identifiable downloaded beacons of
COVID-19 positive persons in her region.

The notification includes information
about what to do next.

A match is found

ALERT: You have recently come in
contact with someone who has
tested positive for Covid-19

Tap for more information -->

Sometime later…

Additional information and
guidance is provided by the
public health authority

1
0
9

Exposure Notifications: Privacy Principles

Opt-In
Required for enabling Exposure Notification

Required prior to uploading exposure keys to the Health Authority Key Server

No Linkable or Persistent Identifiers
Local observers should not be able to track users who never report positive

No Centralized Social Graph
Reported keys are downloaded and all matching for scanned Bluetooth beacons for any

exposure events, are done on device

110

Problem:
How to get feedback to tune epidemiological
parameters and evaluate effectiveness while

upholding the privacy principles?

111

How many notifications are displayed per reported diagnosis?

How many people who received a notification end up
reporting a positive diagnosis?

112

If we raised the risk threshold, how many more people would
receive notifications?

If we lowered the risk threshold, how many people would be
infected but not receive a notification?

113

Exposure Notifications Private Analytics Goals

Upholding Exposure Notification Privacy Principles
Aggregated Metrics

Individual contributions are not available and cannot be inferred

For Health Authorities
Only the Health Authorities have access to the aggregated metrics
Apple and Google servers don’t learn individual contribution or aggregated metric

Robustness
No single user should be able to skew the result

Easy to Use and Understand
Provide an easy to use web portal to help health authorities make informed decisions about Exposure Notifications

Common Solution across Google and Apple

114

Agenda

Exposure Notifications (EN)

Exposure Notifications Private Analytics (ENPA)

Instantiation and Deployment of ENPA

Challenges and Recommendations

115

Prio

Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics
Henry Corrigan-Gibbs, Dan Boneh, NSDI 2017

Properties
● Multiparty aggregation system
● Protect individual user contributions
● Can be combined with differential privacy
● A malicious user can at most lie about

their input
Real World Crypto 2020

https://rwc.iacr.org/2020/slides/Gibbs.pdf

116

Prio System Architecture

.

.

.

User Devices Aggregation Servers

Aggregate
output

Non-collusion
assumption

among servers

117

(0 , 0 , 0 , 1 , 0)

Prio User Input

No
 n

ot
ific

at
io

n
No

tifi
ca

tio
n

se
ve

rit
y 1

No
tifi

ca
tio

n
se

ve
rit

y 2
No

tifi
ca

tio
n

se
ve

rit
y 3

No
tifi

ca
tio

n
se

ve
rit

y 4
Fixed-size
bit-vector

representing the
metric of interest

118

Prio Secret Sharing

(r1 , r2 , r3 , r4 , r5 , …
), π

Compute secret shares
ri random in Zp, r’i = bi - ri (mod p)

Compute validity proofs: π and π’
Show the input vector is binary: bi(1-bi) ≡ 0

(r’1 , r’2 , r’3 , r’4 , r’5 , …), π’
(0 , 0 , 0 , 1 , 0)

Secret share the
input vector and
prove that it is a

bitvector

119

Prio Secure Aggregation

Compute secret shares
ri random in Zp, r’i = bi - ri (mod p)

Compute validity proofs: π and π’
Show the input vector is binary: bi(1-bi) ≡ 0

(S1 = ∑ r1, S2 = ∑ r2, …)

Jointly verify
proofs

(S’1 = ∑ r’1, S’2 = ∑ r’2, …)

Output (mod p)
S1+S’1, S2+S’2, S3+S’3,
…

S1, S2, S3, ...(r1 , r2 , r3 , r4 , r5 , …
), π

S’1, S’2, S’3, ...
(0 , 0 , 0 , 1 , 0)

(r’1 , r’2 , r’3 , r’4 , r’5 , …), π’

Sum (mod p)
vector shares
with verified proofs

Aggregate valid
secret shares

120

Differential Privacy in Prio

Flip each input bit with small probability 𝛼
apply amplification by shuffling to determine DP guarantees

Compute secret shares

Compute validity proofs

(r1 , r2 , r3 , r4 , r5 , …
), π

(0 , 0 , 0 , 1 , 0)

(S1 = ∑ r1, S2 = ∑ r2, …)

Jointly verify
proofs

(S’1 = ∑ r’1, S’2 = ∑ r’2, …)

Output (mod p)
S1+S’1, S2+S’2, S3+S’3, …

S1, S2, S3, ...

S’1, S’2, S’3, ...

(r’1 , r’2 , r’3 , r’4 , r’5 , …), π’

Sum (mod p)
vector shares
with verified proofs

121

Private Analytics: Meeting Design Goals

Data Privacy, Data Minimization, Data Integrity

Prio with non-colluding servers: aggregated and differentially private data

Well-defined metrics to answer health authorities questions

Validity proofs, device attestation

Efficiency

One-shot protocol for devices, one round of communications between aggregation servers

Common Solution across Google and Apple

Prio (published at NSDI 2017; presented at RWC 2020)

122

Agenda

Exposure Notifications (EN)

Exposure Notifications Private Analytics (ENPA)

Instantiation and Deployment of ENPA

Challenges and Recommendations

123

Instantiation of Prio for ENPA: a lot of moving parts

Parties Running Non-colluding Servers

Establishing Trust

Multi-Cloud Solution

Ingestion Servers

Aggregating over Time Windows

ENPA Health Authority Consent

ENPA User Consent

Device Attestation

Communication via Storage Buckets

Kubernetes Clusters

Cloud Identity Federation

Code Development

Serialization Format

Data Alignment

Parameter Choices

Differential Privacy Trade-offs

124

US deployment

Non-colluding Aggregation Servers
Servers built on Kubernetes and

running on two distinct cloud providers

Web Portal
Data access and graphical representations

of the differentially-private aggregates
for all state health authorities

The MITRE Corporation
Not-for-profit organization

Internet Security Research Group
California public benefit corporation for
digital infrastructure projects, operators
of Let's Encrypt

National Cancer Institute (NCI)
at the National Institutes of
Health (NIH)
Agency of the U.S. Department of
Health and Human Services

125

Role of the ingestion servers
run by Apple and Google

Always-online

Drop metadata (IP address, time)

Check device attestation (OS-specific)

Align the data (i.e., contribution
forwarded to both aggregation servers)

Batch and reorder multiple contributions

Authenticate batches

Generate random point for polynomial
identity test

Ingestion Servers

Ingestion Server

✉1=Enc(PK, share, proof)

✉2=Enc(PK’, share’, proof’)

✉1 ✉2 ✉
1
✉

1
✉

1
✉
2
✉
2
✉
2

Storage
Buckets

Aggregation
Servers

Decrypt
Process...

Decrypt
Process...

ISRG

NCI

126

Asynchronous System

Data Collection
Receive continuous data from clients
Drop metadata
Periodically write shuffled batches of valid
contributions to shared storage buckets

Data Aggregation
Periodically read data from shared storage
Decrypt, verify proofs, aggregate shares
Send aggregate parts to MITRE every 8 hours

Jointly verify
proofs

Aggregate

shares

Aggregate
shares

NCI

ISRG

MITRE

Data Consumption
Sum aggregate parts over 24h
Provide UI for PHAs to access the
aggregate data

MITRE

PHA
User
Interface✉

1✉
1✉

1

✉ 2✉ 2✉ 2

ISRG

NCI

✉1 ✉2

✉1 ✉2

✉1 ✉2

✉1 ✉2

✉1 ✉2

✉1 ✉2

127

iOS
phone

Android
phone

Apple
Ingestion

Server

Google
Ingestion

Server

ISRG
Server

NIH
Server

MITRE
Server

Encrypted
shares and proofs

Encrypted
shares and proofs

Apple atte
sted

encrypted data

Go
og

le
 at

te
st

ed

en
cr

yp
te

d
da

ta

Google attested

encrypted data

Apple attested

encrypted data

Di
st

rib
ut

ed

pr
oo

f v
er

ifi
ca

tio
n

Aggregate

shares

Agg
re

ga
te

 sh
ar

es

PHAAggregate
analytics

Helper Server

PHA Server128

ENPA Consent

PHA consent

Each state public health authority (PHA)
needs to elect to activate ENPA, by signing a
contract with MITRE

User Consent

Each user consents to contribute their data
to ENPA

129

130

Current Deployment

First deployment: December 2020

ENPA is used in 15 US states and 4
Mexican states. 9 metrics are collected
and the aggregation servers process
millions of contributions daily.

https://www.doh.wa.gov/Newsroom/Articles/ID/2827/Researchers-from-UW-
and-DOH-find-WA-Notify-exposure-notification-tool-is-saving-lives

Appendix

References

● Papers:
○ Secure Aggregation ‘17: https://research.google/pubs/pub45808/
○ Secure Aggregation ‘20: https://eprint.iacr.org/2020/704
○ ENPA white paper

● Presentations:
○ CCS 2017: Secure Aggregation
○ RWC 2022: ENPA
○ RWC 2023 : Crypto Agility and PQC

