CSCI 1510

• Program Obfuscation (continued)

• Final Review

ANNOUNCEMENT: Course Feedback & Critical Review
Program Obfuscation

Goal: Make the program "unintelligible" without affecting its functionality.
Symmetric-Key to Public-Key

\[
\begin{align*}
&\text{Encrypt} \\
&\quad \downarrow m \\
&\quad \downarrow sk \\
&\quad \downarrow C \\
&\Downarrow C \\
&\text{Decrypt} \\
&\quad \downarrow c \\
&\quad \downarrow sk \\
&\quad \downarrow m \\
&\Downarrow m
\end{align*}
\]
Formal Definition: Virtual Black Box (VBB)

Obfuscator $O: C \xrightarrow{O} O(C)$

- **Functionality:** $O(C)$ computes the same function as C.
- **Polynomial Slowdown:** $|O(C)| \leq \text{poly}(n) \cdot |C|$
- **Security (Virtual Black Box):**

 \[\forall PPT A, \exists PPT S, \text{s.t.} \forall C, \ A(O(C)) \approx_S \lambda C : S^C(1^{\text{poly}}). \]

\[O(C) \approx \text{Simulator} \]

Thm: VBB obfuscator for all poly-sized circuits is impossible to achieve.

\[C(x) := \begin{cases}
 b & \text{if } x = a \\
 m & \text{if } x(a) = b \\
 0 & \text{otherwise}
\end{cases} \]
Formal Definition: Indistinguishability Obfuscation (iO)

$O: C \rightarrow O(C)$

- **Functionality:** $O(C)$ computes the same function as C.
- **Polynomial Slowdown:** $|O(C)| \leq \text{poly}(n) \cdot |C|$
- **Security (indistinguishability obfuscation):**
 If C_0 & C_1 compute the same function and $|C_0| = |C_1|$, then $O(C_0) \approx O(C_1)$

- **Best Possible Obfuscation**
PKE from iO

Let $G : \{0,1\}^n \rightarrow \{0,1\}^{2m}$ be a length-doubling PRG.

- **Gen (1^n):**

 $sk \in \{0,1\}^n$

 $Pk := G(sk)$

- **Encpk (m):**

 $C_{pk,m} (x) := \begin{cases} m & \text{if } G(x) = pk \\ \bot & \text{otherwise} \end{cases}$

 Output $c \leftarrow iO(C_{pk,m})$

- **Decsk (c): ?

Thm. If G is a PRG and $iO(\cdot)$ is an indistinguishability obfuscator, then this PKE scheme is CPA-secure.
Is it possible?

- 2001: Notion introduced
- 2013: First “candidate” construction from multilinear maps
- 2013-2020: Attack, fixes, new constructions from new assumptions
- 2020: New construction from well-founded assumptions
Final Review

- Cryptographic Hardness Assumptions
 - Factoring / RSA Assumptions
 - DLOG / CDH / DDH Assumptions
 - LWE Assumption (Post-Quantum)

- Key Exchange
 - Definition
 - Construction: Diffie-Hellman

- Public Key Encryption
 - Definition: CPA / CCA
 - Constructions: El Gamal / RSA / Regev
Final Review

- Theoretical Assumptions
 - One-Way Function/Permutation: Definition & Candidates
 - Hard-Core Predicate: Definition & Construction
 - PRG/PRF from OWP
 - Trapdoor Permutation: Definition & Candidate (RSA)
 - PKE from TDP

- Fully Homomorphic Encryption
 - Definition & Applications
 - Somewhat Homomorphic Encryption over Integers & from LWE (GSW)
 - Bootstrapping SWHE to FHE
Final Review

- Digital Signature
 - Definition
 - Hash-and-Sign Paradigm
 - Construction 1: RSA-FDH
 - Proof in the Random Oracle Model
 - Construction 2: Schnorr
 - Identification Scheme: Definition & Construction from DLOG (Schnorr)
 - Fiat-Shamir Transform
Final Review

- Zero-Knowledge Proof
 - Definition: Completeness / Soundness / Zero-Knowledge
 - Example: ZKP for Diffie-Hellman Tuples
 - Proof Technique: Rewinding
 - ZKP for All NP (Graph 3-Coloring)
 - Commitment Scheme
 - Non-Interactive ZK
Final Review

- Secure Multi-Party Computation
 - Definition: Semi-Honest / Malicious
 - Applications
 - Example: Private Set Intersection from DDH
 - MPC for Any Function (GMW)
 - Oblivious Transfer: Definition & Construction from CDH

- Program Obfuscation
 - Definitions: VBB/iO
 - Example: PKE from iO
Thank You 😊