CSCI 1510

- ZKP for All NP (continued)
- Non-Interactive Zero-Knowledge Proofs
- Definitions of Secure Multi-Party Computation
Zero-Knowledge Proof (ZKP)

Let \((P, V)\) be a pair of PPT interactive machines. \((P, V)\) is a zero-knowledge proof system for a language \(L\) with associated relation \(RL\) if

1. **Completeness:** \(\forall (x, w) \in RL, \quad \Pr[\text{P}(x, w) \leftrightarrow \text{V}(x) \text{ outputs 1}] = 1\).
2. **Soundness:** \(\forall x \in L, \forall \text{ (PPT) } P^*, \quad \Pr[\text{P}^*(x) \leftrightarrow \text{V}(x) \text{ outputs 1}] \leq \text{negl}(n)\).
3. **Zero-Knowledge:** \(\forall \text{PPT } V^*, \exists \text{PPT } S \text{ s.t. } \forall (x, w) \in RL, \quad \text{Output}_{V^*}[\text{P}(x, w) \leftrightarrow V^*(x)] \approx S(x)\)
ZKP for Graph 3-Coloring (All NP)

NP language \(L = \{ G : G \text{ has 3-coloring} \} \)

NP relation \(R_L = \{ (G, 3\text{COL}) \} \)

\[\pi : \{ \bullet \bullet \bullet \} \rightarrow \{ \bullet \bullet \bullet \} \]
Commitment Scheme

Sender
\[m \in \{0, 1\} \]

Commit:
\[r \in \{0, 1\}^n \]
\[c := \text{Com}(m; r) \]

Decommit:
\[(m, r) \]

Receiver

Verify:
\[c = \text{Com}(m; r) \]

- **Perfectly Binding**: \(\forall r, s \in \{0, 1\}^n \), \(\text{Com}(0; r) \neq \text{Com}(1; s) \)

- **Computationally Hiding**: \(\text{Com}(0; \text{Un}) \approx \text{Com}(1; \text{Un}) \)
ZKP for Graph 3-Coloring

Input: \(G = (V, E) \)
Witness: \(\phi: V \to \{0,1,2\} \)

Given a perfectly binding commitment scheme \(\text{Com} \).

Soundness?

\(G \& L, \) by perfect binding of \(\text{Com} \),
\(\Pr[p^* \text{ not caught}] \leq (1 - \frac{1}{|E|})^{|E|} \approx e^{-n} \)

<table>
<thead>
<tr>
<th>Prover</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Randomly sample } \pi: {0,1,2} \rightarrow {0,1,2} \quad \text{(n \cdot</td>
<td>E</td>
</tr>
<tr>
<td>\forall v \in V, \quad rv \in {0,1,2}^n, \quad C_v := \text{Com}(\pi(\phi(v)); rv)</td>
<td></td>
</tr>
<tr>
<td>{C_v}_{v \in V}</td>
<td></td>
</tr>
<tr>
<td>\begin{align*} \alpha &= \pi(\phi(u)), \quad ru \ \beta &= \pi(\phi(v)), \quad rv \end{align*} \quad \text{Verify: } C_u &= \text{Com}(\alpha; ru) \ C_v &= \text{Com}(\beta; rv) \ \alpha, \beta \in {0,1,2}^3, \quad \alpha \neq \beta</td>
<td></td>
</tr>
</tbody>
</table>

Completeness?
Zero-Knowledge?

∀PPT V^*, ∃PPT S s.t. ∀(x, w) ∈ R_l,

Output V^*[P(x, w) \leftrightarrow V^*(x)] \leq S(x)

Simulator

\[(u, v') \in \mathcal{E} \]
\[\alpha, \beta \in \{0, 1\}^n \text{ s.t. } \alpha \neq \beta \]
\[r_u \in \{0, 1\}^n \text{, } C_u := \text{Com}(\alpha, r_u) \]
\[r_v \in \{0, 1\}^n \text{, } C_v := \text{Com}(\beta, r_v) \]
\[\forall v \in V \setminus \{u, v\} : \]
\[r_v \in \{0, 1\}^n \text{, } C_v := \text{Com}(0, r_v) \]

\[\{C_v\}_{v \in V} \]

Verifier

If \((u, v) = (u', v')\):
Reveal decommitments of \(C_u \& C_v\)

Otherwise rewind

\[\alpha, r_u \]
\[\beta, r_v \]
\((u', v') \in E \)
\(\alpha, \beta \in \{0, 1, 2\} \) s.t. \(\alpha \neq \beta \)

Construct \(\pi : \{0, 1, 2\} \rightarrow \{0, 1, 2\} \) s.t.
\(\pi(\phi(u')) = \alpha \land \pi(\phi(v')) = \beta \)
\(\forall v \in V, \, \forall v' \in \{0, 1\}^n, \, C_v := \text{Com}(\pi(\phi(v)), r_v) \)

\(\{C_v\}_{v \in V} \)

Reveal discommitments of \(Cu \) & \(Cv \)
\(\alpha = \pi(\phi(u)), \, r_u \)
\(\beta = \pi(\phi(v)), \, r_v \)
\[Pr[\text{failure}] \leq (1 - \frac{1}{|E|})^{n \cdot |E|} \approx e^{-n}. \]
H_0: Prover \leftrightarrow Verifier

III (identical distribution of T_1)

H_1
sS_1 (negligible failure probability)

H_2
cS_1 (computational hiding of Com)

H_3: Simulator \leftrightarrow Verifier
Non-Interactive Zero-Knowledge (NI-ZK) Proof

\[
\begin{array}{c}
\text{Prover} \\
\text{Input: } (x, w) \\
\pi \\
\text{Verifier} \\
\text{Input: } x \\
\text{Verify}
\end{array}
\]

- Completeness: \(\forall (x, w) \in R_L, \Pr[P(x, w) \rightarrow V(x) \text{ outputs 1}] = 1 \).
- Soundness: \(\forall x \in L, \forall P^*, \Pr[P^*(x) \rightarrow V(x) \text{ outputs 1}] \leq \text{negl}(n) \).
- Zero-Knowledge: \(\forall PPT V^*, \exists PPT S \text{ s.t. } \forall (x, w) \in R_L, \\text{Output}_{V^*}[P(x, w) \rightarrow V^*(x)] \approx S(x) \).

Is it possible?

Not in the "plain" model (assuming P\(\neq \)NP)

\(x \in L \) ? \(S(x) \rightarrow \text{Verify} \)
Model 1: Common Random String / Common Reference String (CRS)

- **Prover**
 - Input: \((x, w)\)
 - Computes: \(6 \leftarrow \text{Gen}(1^n)\)

- **Verifier**
 - Input: \(x\)
 - Computes: \(\Pi\)

- **Diagram**
 - Prover: \(S(x)\) generates both \((6, \Pi)\)

- **Zero-Knowledge**: \(\forall \text{PPT } V^*, \exists \text{PPT } S \text{ s.t. } \forall (x, w) \in R_L, \)

 \[\text{Output}_{V^*}[6 \leftarrow \text{Gen}(1^n), P(x, w, 6) \rightarrow V^*(x, 6)] \simeq S(x) \]

- **Alternatively**: \(6 \leftarrow \text{Gen}(1^n), P(x, w, 6) \simeq S(x)\)
Model 2: Random Oracle Model

- **Prover**
 - Input: \((X, W)\)

- **Verifier**
 - Input: \(X\)

\(S\) controls input/output behavior of RO
Fiat-Shamir Heuristic

Public-Coin Honest-Verifier ZK (HVZK) \(\Rightarrow \) NIZK in the RO model

<table>
<thead>
<tr>
<th>Prover</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: ((x, w))</td>
<td>Input: (x)</td>
</tr>
</tbody>
</table>

\[
m_1
\]

\[
\leftarrow 6_1
\]

\[
m_2
\]

\[
\leftarrow 6_2
\]

\[
m_3
\]

\[
6_1 := H(x \| m_1)
\]

\[
6_2 := H(x \| m_1 \| m_2)
\]
Secure Multi-Party Computation

Alice

Second date?
\[f(x, y) = x \land y \]

Bob

Who is richer?
\[f(x, y) = \begin{cases} 0 & \text{if } x > y \\ 1 & \text{otherwise} \end{cases} \]

Common friends?
\[f(x, y) = x \land y \]
Secure Two-Party Computation (2PC)

Alice

Bob

Applications:
- Password Breach Alert (Chrome/Firefox/Azure/iOS Keychain)
- Privacy-Preserving Contact Tracing for COVID-19 (Apple & Google)
- Ads Conversion Measurements / Personalized Advertising (Google/Meta)

\[z = f(x, y) \]
Secure Multi-Party Computation (MPC)

\[
\begin{align*}
\forall & \ x_1, \ x_2, \ x_3, \ x_4, \ \ldots, \ x_n \\
\exists & \ z = f(x_1, \ldots, x_n)
\end{align*}
\]
Secure Multi-Party Computation (MPC)

Applications:

- Privacy-Preserving Inventory Matching (J.P. Morgan)
- Setup Ceremony to securely generate CRS (Zcash)
- Distributed Key Management (Unbound / Coinbase)
- Federated Learning (Google Keyboard Search Suggestion)
- Auctions (Danish sugar beet auction)
- Boston gender wage gap (Boston Women's Workforce Council)
- Study / Analysis on Medical Data
- Fraud Detection (banks)
Setting

- n parties P_1, P_2, \ldots, P_n
 - with private inputs x_1, x_2, \ldots, x_n

- Jointly compute $f(x_1, x_2, \ldots, x_n)$

Communication:
- Authenticated secure point-to-point channels between each pair (P_i, P_j)
 - sometimes also assume broadcast channel

- The adversary can "corrupt" a subset of the parties
 - (e.g. at most t parties)

What properties do we want?
General Security Properties

• Correctness: The function is computed correctly.

• Privacy: Only the output is revealed.

• Independence of Inputs: Parties cannot choose inputs depending on others' inputs.

• Security with Abort: Adversary may “abort” the protocol.
 (preventing honest parties from receiving the output)

• Fairness: If one party receives output, then all receive output.

• Guaranteed Output Delivery (GOD): Honest parties always receive output.
Adversary’s Power

Allowed adversarial behavior:

- Semi-honest / passive / honest-but-curious:
 Follow the protocol description honestly, but try to extract more information by inspecting transcript.

- Malicious / active:
 Can deviate arbitrarily from the protocol description.

Adversary’s Computing Power:

- Unbounded computing power ⇒ Information-Theoretic (IT) Security
- PPT bounded ⇒ Computational Security
Security Against Semi-Honest Adversaries

Alice

Bob

\[
\begin{align*}
&\text{Alice's view:} \\
\text{View}_A^T (x, y, n) := (x, \text{ internal random tape } r, \text{ messages from Bob}) \\
\end{align*}
\]

Given \(x, f(x, y)\), Alice's view can be "simulated."
Security Against Semi-Honest Adversaries

Def (Semi-honest security for 2PC)

Let f be a functionality. We say a protocol Π securely computes f against semi-honest adversaries if \exists PPT algorithms S_A, S_B s.t. $\forall x,y,$

\[
\begin{align*}
\left\{ \left(S_A \left(1^n, x, f(xy) \right) \right) \right\}_{n \in \mathbb{N}} & \approx \left\{ \left(\text{View}^\Pi_A \left(x, y, n \right) \right) \right\}_{n \in \mathbb{N}} \\
\left\{ \left(S_B \left(1^n, y, f(xy) \right) \right) \right\}_{n \in \mathbb{N}} & \approx \left\{ \left(\text{View}^\Pi_B \left(x, y, n \right) \right) \right\}_{n \in \mathbb{N}}
\end{align*}
\]

perfect/statistical/computational

\[\equiv \preceq \triangleq\]
Security Against Malicious Adversaries

\[\text{Alice} \rightarrow \text{Bob} \]

\[x \rightarrow y \]

\[f(x,y) \downarrow \]

\[f(x,y) \downarrow \]

\text{Alice's view:} \quad \text{View}_{A}^{T}(x, y, n) = (x, \text{ internal random tape } r, \text{ messages from Bob})

Given x, $f(x,y)$, Alice's view can be "simulated".

What output?
What's the best we can hope for? (Ideal World)
Security Against Malicious Adversaries (Real/Ideal Paradigm)

Execution in the Real World:

(PPT) adversary A corruting party $i \in \{\text{Alice, Bob}\}$

$$\text{REAL}_{A,i} := (\text{A's output})$$

Execution in the Ideal World:

PPT adversary S corrupting party $i \in \{\text{Alice, Bob}\}$

$$\text{IDEAL}_{S,i} := (\text{S's output})$$

Def (malicious security for 2PC):

Let f be a functionality. We say a protocol Π securely computes f against malicious adversaries if $\forall (\text{PPT}) A$ in the real world, $\exists \text{PPT } S$ in the ideal world s.t. $\forall i \in \{\text{Alice, Bob}\}$, $\forall x, y$,

$$\left\{\text{REAL}_{A,i}(x, y, n)\right\}_{n \in \mathbb{N}} \simeq \left\{\text{IDEAL}_{S,i}(x, y, n)\right\}_{n \in \mathbb{N}}$$