Chapter 1 Linear Programming

Paragraph 5 Duality

What we did so far

- We developed the 2-Phase Simplex Algorithm:
 - Hop (reasonably) from basic solution (bs) to bs until you find a basic feasible solution (bfs) or until it becomes clear that none exists.
 - Hop from bfs to bfs until you cannot find an improving solution or the improving trajectory is unbounded.
- We have seen that we can guarantee termination but that the worst-case runtime is exponential.
- Again: Note that LP is polynomial time solvable!

Lower Bounds on the Objective

- Let $\pi \in \hat{A}^m$, $\pi \ge 0$. Consider two sets: $-P_1 = \{x \in \hat{A}^n \mid Ax \ge b, x \ge 0\}$ and $-P_2 = \{x \in \hat{A}^n \mid \pi^T Ax \ge \pi^T b, x \ge 0\}.$
- Since $\pi \ge 0$, it is clear that $P_1 \ \text{\AA} P_2$, in other words: For all $x \in P_1$ we have that $\pi^T A x \ge \pi^T b$.
- Now assume that $\pi \ge 0$ and also $\pi^T A \le c^T$. Then, for all $x \in P_1$, we have that $\pi^T b \le \pi^T A x \le c^T x$.
- Therefore, every such π provides us with a lower bound on the objective!

Duality

- The problem of finding the best such lower bound π^Tb with π ∈ Â such that π^TA ≤ c^T, π ≥ 0 is called the Dual Problem of (P₁,c).
- Formally, let $P_3 = \{\pi \in \hat{A}^m \mid A^T \pi \le c, \pi \ge 0\}$. Then, (P₃,b) is called the dual of the primal (P₁,c).
- Theorem
 - The dual of the dual is the primal.
 - For all primal feasible x and dual feasible π it holds that π^Tb ≤ c^Tx [weak duality].

Example

•

- Minimize $x_1 + 3x_2 + x_3$ such that
 - $-2x_{1}+x_{2} \ge 3$ --x_{1}+x_{3} \ge 4 (P) -x_{1}, x_{2}, x_{3} \ge 0
- $\pi^{1^{\mathsf{T}}} = (1/2, 1) \Rightarrow \operatorname{Relax} P_1 \text{ to}$ • $0.5x_2 + x_3 \ge 5.5$ • $x_1, x_2, x_3 \ge 0$
 - Maximize $3\pi_1 + 4\pi_2$ such that $-2\pi_1 - \pi_2 \le 1$

(D)

 $-0 \le \pi_1 \le 3$ $-0 \le \pi_2 \le 1$ π^{1} is dual feasible and shows: every feasible x (if any exists!) has an objective value of at least 5.5!

Example

- Minimize $x_1 + 3x_2 + x_3$ such that
 - $-2x_{1}+x_{2} \ge 3$ --x_{1}+x_{3} \ge 4 (P) -x_{1}, x_{2}, x_{3} \ge 0
- $\pi^{0^{\mathsf{T}}} = (1,1) \Rightarrow \operatorname{Relax} \mathsf{P}_1 \operatorname{to} \cdot x1 + x2 + x3 \ge 7$
 - $x_1, x_2, x_3 \ge 0$
- Maximize $3\pi_1 + 4\pi_2$ such that $-2\pi_1 - \pi_2 \le 1$ $-0 \le \pi_1 \le 3$ (D) $-0 \le \pi_2 \le 1$

 π^0 is dual optimal and shows: every feasible x (if any exists!) has an objective value of at least 7!

The Dual of the Standard Form

- $P_1 = \{x \in \hat{A}^n \mid Ax = b, x \ge 0\}$ (LP)_S = (P₁,c)
- $P_2 = \{x \in \hat{A}^n \mid Ax \ge b, -Ax \ge -b, x \ge 0\}$ (LP)_C = (P₂,c)
- $P_3 = \{(\eta, \mu) \in \hat{A}^m \mid A^T\eta A^T\mu \le c, \eta, \mu \ge 0\}$ C $P_4 = \{\pi \in \hat{A}^m \mid A^T\pi \le c\} [\pi \text{ not non-negative anymore!}]$
- The dual of $(LP)_S$ is therefore (P_4,b) .

The Dual of Unspecified Forms

• Min c^Tx

$$- A_{M^+} x \ge b_+$$

 $- A_{M} x \leq b_{1}$

 $- x_{N0}$ unrestricted

- Max b^Tπ
 - $-\pi_{M^+} \ge 0$
 - π_{M0} unrestricted

$$\begin{array}{l} - \ \pi_{M^{-}} \leq 0 \\ - \ (A^{T})_{N^{+}} \ \pi \ \leq c_{N^{+}} \\ - \ (A^{T})_{N0} \ \pi = c_{N0} \\ - \ (A^{T})_{N^{-}} \ \pi \ \geq c_{N^{-}} \end{array}$$

 $M+\cup M0\cup M-=\{1,..,m\} \qquad N+\cup N0\cup N-=\{1,..,n\}$

Strong Duality

$$\overline{\mathbf{c}}^{\mathsf{T}} = \mathbf{c}^{\mathsf{T}} - \mathbf{c}_{\mathsf{B}}^{\mathsf{T}} \mathbf{A}_{\mathsf{B}}^{-1} \mathbf{A} - \mathbf{c}^{\mathsf{T}} \mathbf{x}^{0}$$
$$\mathbf{A}_{\mathsf{B}}^{-1} \mathbf{A} \qquad \mathbf{A}_{\mathsf{B}}^{-1} \mathbf{b}$$

- Given is an LP in standard form.
- We know: The current bfs x^0 in the tableau is optimal when $c^T c_B^T A_B^{-1} A \ge 0 \dots (c_B^T A_B^{-1}) A \le c$.
- Therefore, $\pi^T := c_B^T A_B^{-1}$ is dual feasible!
- But: $\pi^{T}b = c_{B}^{T}A_{B}^{-1}b = c_{B}^{T}x_{B}^{0} = c^{T}x^{0}!$ \odot

Duality

- The problem of finding the best such lower bound $\pi^{\mathsf{T}}\mathsf{b}$ with $\pi \in \hat{\mathsf{A}}$ such that $\pi^{\mathsf{T}}\mathsf{A} \leq \mathsf{c}^{\mathsf{T}}, \pi \geq 0$ is called the Dual Problem of (P₁,c).
- Formally, let $P_3 = \{\pi \in \hat{A}^m \mid A^T \pi \le c, \pi \ge 0\}$. Then, (P₃,b) is called the dual of the primal (P₁,c).
- Theorem
 - The dual of the dual is the primal.
 - For all primal feasible x and dual feasible π it holds that π^Tb ≤ c^Tx [weak duality].
 - For primal optimal x^0 and dual optimal π^0 it holds that $\pi^{0^{\mathsf{T}}}b = c^{0^{\mathsf{T}}}x$ [strong duality].

Complementary Slackness

- Consider an LP in canonical form with x^0 primal optimal, and π^0 dual optimal.
- $c^{\mathsf{T}}x^{0} = \pi^{0^{\mathsf{T}}}b \le \pi^{0^{\mathsf{T}}}Ax^{0} \le c^{\mathsf{T}}x^{0} \implies \pi^{0^{\mathsf{T}}}(Ax^{0}-b) = 0.$
- $\pi^{0^{\mathsf{T}}}b = c^{\mathsf{T}}x^{0} \ge \pi^{0^{\mathsf{T}}}Ax^{0} \ge \pi^{0^{\mathsf{T}}}b \implies (c^{\mathsf{T}}-\pi^{0^{\mathsf{T}}}A) x^{0} = 0.$
- Consequently, since π^0 , Ax^0 - $b \ge 0$, π^0 can only have non-zero components where there is no slack in the corresponding primal constraint.
- Analogously, since x⁰, c^T- π^{0^T}A ≥ 0, x⁰ can only have non-zero components where there is no slack in the corresponding dual constraint.

Relation of Primal and Dual

Dual Primal	Finite Optimum	Unbounded	Infeasible
Finite Optimum	✓ [sd]	× [wd]	× [sd]
Unbounded	× [wd]	× [wd]	✓ [wd]
Infeasible	× [sd]	✓ [wd]	\checkmark

wd – weak duality sd – strong duality

Farkas' Lemma

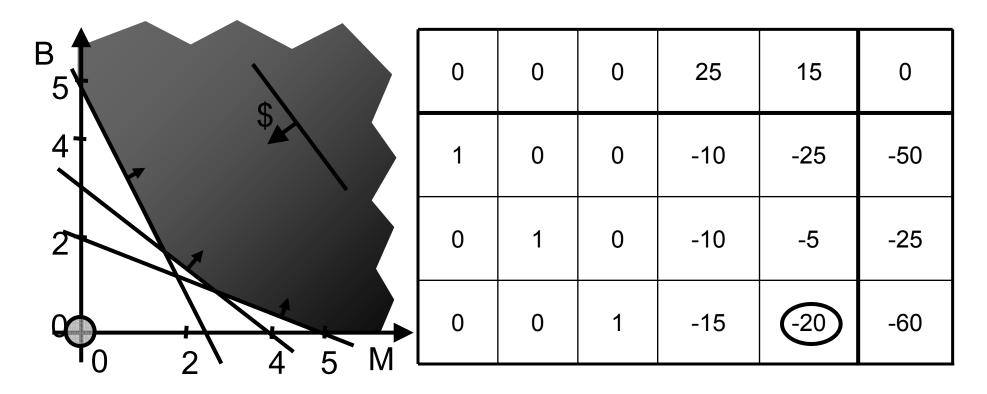
- Given are $a_i \in \hat{A}^n, 1 \le i \le m$, and a vector $c \in \hat{A}^n$.
- The cone of the a_i is defined as the set $C(a_1,..,a_m) := \{x \in \hat{A}^n \mid x = \Sigma \ \pi_i a_i, \ \pi_i \ge 0\}.$
- Farkas' Lemma
 - (For all y with $y^Ta_i \ge 0$ for all i it holds $y^Tc \ge 0$) ⇔
 - $-c \in C(a_1,..,a_m).$
- Proof: Exercise!

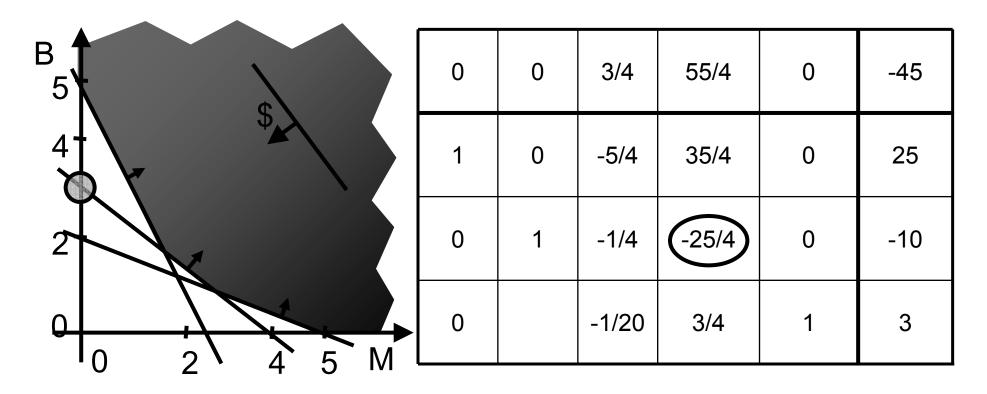
- We have seen how we compute a dual optimal solution after having solved the primal with the simplex algorithm.
- Consequently, we can solve the primal by solving the dual!
- In case that c ≥ 0, π = 0 is dual feasible so we may save the effort for solving phase I when focusing on the dual right away.
- Example: Transportation Problem, Diet Problem, Shortest Path, ...

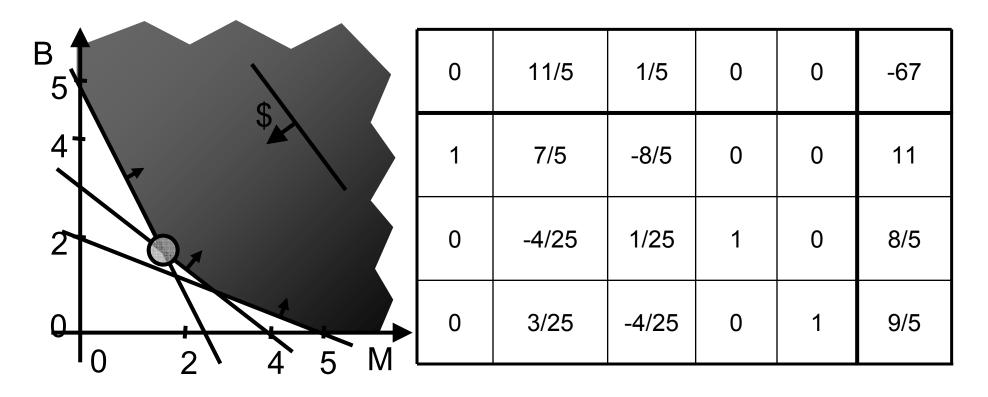
- Recall that the dual works by looking at –Ā[⊤] instead of A in the tableau.
- Consequently, we can simply exchange the roles of rows and columns and consider matrix entries with opposite sign.
- Assume we are dual feasible. Then:
 - Search for a row with negative \overline{b}_i . (no such i \Rightarrow dual optimal \Rightarrow primal feasible)
 - Find a column j such that $\overline{a}_{ij} < 0$ and $\overline{c}_j / -\overline{a}_{ij}$ is minimal! (no such j \Rightarrow dual unbounded \Rightarrow primal infeasible)
 - Pivot around \overline{a}_{ii} .

Examples – Diet Problem

		B	Amount needed [g]	
Cost/kg [\$]	20	15		Minimize 25M + 15B
Carbs [%]	10	25	500	10M + 25B – 50
Fat [%]	10	5	250	10M + 5B – 25
Protein [%]	15	20	600	15M + 20B – 60







Shadow Prices

- Consider production planning. In the optimal tableau, the relative costs of the slack variables are exactly -c_B^TA_B⁻¹.
- Note that the objective in the simplex was to minimize. Thus, the relative costs of slack variables give us the dual solution.
- If a slack variable is not in the basis, it is 0 in the optimal solution. I.e. the corresponding constraint is tight for optimality.
- Now, the relative costs tell us, how much we could gain if the constraint was not tight. Consequently, the optimal duals are called "shadow prices" of their corresponding constraints.

Thank you!

