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What we did so far

• We developed the 2-Phase Simplex
Algorithm.

• We introduced the notion of Duality and
established a close relationship between an
LP and its dual:
– Weak duality: Every dual feasible solution

provides a bound on the objective.
– Strong duality: Optimal primal and optimal dual

solutions have the same objective value.
• We developed the Dual Simplex Algorithm.



CS 149 - Intro to CO 3

Why Different Variants of
Simplex?

• The dual simplex saves the hassle of
finding a feasible solution first. It is
especially well suited for re-optimization
after new constraints are added.
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Another Simplex-Variant

• Recall the complementary slackness
property:
– x0 and π0 are optimal        ⇔
– π0T(Ax0-b) = 0  and  (cT- π0TA) x0 = 0.

• Idea: We could try to modify both primal and
dual variable instantiations such that we
come “closer” to fulfilling the complementary
slackness conditions. If we succeed in
meeting them, then we have solved the
problem!
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The Standard Form and its
Dual

• Assume that b ≥ 0 and that we know a
feasible dual solution π.

• Denote with
J(π) := { j | Aj

Tπ = cj} the set of admissible
columns.

• Now assume we found a feasible solution x
for (P) such that { j | xj > 0} ⊆ J(π), then both π
and x are optimal!

• Min cTx
– Ax = b      (P)
– x ≥ 0

• Max bTπ
– π unrestricted     (D)
– ATπ ≤ c
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How to find such an x?

• Thus, we should try to find a solution to the
following set of constraints:
– Ax = b
– xj = 0 for all j ∉ J(π)
– x ≥ 0

• Finding a feasible solution to such a system is
something that we have done already in the
2-phase simplex algorithm:
– Min 1Txa

– AJxJ + xa = b                        (RP)
– xJ,xa ≥ 0
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Properties of the
Restricted Primal (RP)

• Since b ≥ 0, xa = b and xJ = 0 defines a
feasible solution.

• Since xa ≥ 0, the objective is bounded from
below.

• Consequently, (RP) has an optimal solution,
and so has its dual, that looks as follows:
– Max bTπ
– π ≤ 1                 (DRP)
– AJ

Tπ ≤ 0.
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Improving the Dual Solution

• If (RP) has an optimal objective > 0,
then this proves that π cannot be
optimal.

• Let πr denote the optimal solution of
(DRP).

• Theorem
– There exists a λ > 0 such that π* := π + λπr

is feasible for (D) with bTπ* > bTπ.
• Proof:
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The Primal-Dual Algorithm
• Determine an initial π that is feasible for (D).
• Determine J(π) and the corresponding RP.
• Solve RP and compute its optimal dual

solution πr.
• If RP has objective 0, we are done and the

corresponding (xJ, 0) solves (P).
• Otherwise, compute λ maximal so that
π* = π + λ πr

 is dual feasible.
• Set π := π* and continue.
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An Example

• Solve Min 2x1+2x2+3x3 such that
– x1+x3 ≥ 1
– x2+x3 ≥ 2
– x1,,x2,x3 ≥ 0

• Min 2x1+2x2+3x3 such that
– -s1+x1+x3 = 1
– -s2+x2+x3 = 2
– s1,s2,x1,,x2,x3 ≥ 0
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An Example

ξx3x2x1s2s1a2a1

211-11

111-11

00000011

• Min 2x1+2x2+3x3 such that
– -s1+x1+x3 = 1
– -s2+x2+x3 = 2
– s1,s2,x1,,x2,x3 ≥ 0
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An Example
• Min 2x1+2x2+3x3 such

that
– -s1+x1+x3 = 1
– -s2+x2+x3 = 2
– s1,s2,x1,,x2,x3 ≥ 0

• πT = (0,0)
• cT - πTA = (0,0,2,2,3)
• J = {s1,s2}
• πr = (1,1) – (0,0) = (1,1)
• λ = min {2/1,2/1,3/2} = 3/2

ξx3x2x1s2s1a2a1

211-11

111-11

-3-2-1-11100
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ξx3x2x1s2s1a2a1

101-1-111-1

111-11

-10-111-102

An Example
• Min 2x1+2x2+3x3 such

that
– -s1+x1+x3 = 1
– -s2+x2+x3 = 2
– s1,s2,x1,,x2,x3 ≥ 0

• πT = (3/2,3/2)
• cT - πTA = (3/2,3/2,1/2,1/2,0)
• J = {x3}
• πr = (1,1) – (2,0) = (-1,1)
• λ = min {3/2,1/2} = 1/2

ξx3x2x1s2s1a2a1

211-11

111-11

-3-2-1-11100
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ξx3x2x1s2s1a2a1

101-1-111-1

111-11

00000011

ξx3x2x1s2s1a2a1

101-1-111-1

111-11

-10-111-102

An Example
• πT = (1,2)
• cT - πTA = (1,2,1,0,0)
• J = {x2,x3}
• xT = (0,1,1)

• Min 2x1+2x2+3x3 such
that
– -s1+x1+x3 = 1
– -s2+x2+x3 = 2
– s1,s2,x1,,x2,x3 ≥ 0
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Why Different Variants of
Simplex?

• The dual simplex saves the hassle of finding
a feasible solution first. It is especially well
suited for re-optimization after new
constraints are added.

• The primal-dual algorithm derives its
importance from the simplicity of the
restricted problem or its dual, respectively
(much simpler objective or   right-hand side!).
Often it can be solved with a simple,
specialized algorithm.
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Min-Cost Perfect Matching
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Min-Cost Perfect Matching
• Given a weighted bipartite graph G=(V1∪

V2,E,c).
• Min Σ(i,j) ∈ E cij  xij such that

– Σj;(i,j) ∈ E xij = 1     for all     i ∈ V1              |  π
– Σi;(i,j) ∈ E xij = 1     for all     j ∈ V2               |  µ
– x ≥ 0

• Given a dual feasible solution (π, µ), we have
F := J(π, µ) = { (i,j) ∈ E | πi + µ j = cij }. Then, RP(π, µ) is:

• Min Σiai  + Σjbj such that
– ai + Σj;(i,j) ∈ F xij = 1     for all     i ∈ V1
– bj + Σi;(i,j) ∈ F xij = 1     for all     j ∈ V2
– a,b,x ≥ 0
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Min-Cost Perfect Matching
• Thus, RP(π, µ) is a maximum matching problem!
• It can be shown that every successive matching

contains at least one more edge.
• Consequently, the primal-dual algorithm reduced

the problem of finding a min-cost perfect
matching to solving a sequence of at most |V1|
maximum bipartite matching problems.

• While maximum bipartite matching can be solved
in O(|V1|1/2 E), a more careful analysis of the
primal dual algorithm even shows that it solves
the min-cost perfect matching problem in time
O(|V1+V2|3).
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Thank you!


