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What we did so far

• By combining ideas of a specialized algorithm with   
a geometrical view on the problem, we developed   
an algorithm idea:

• We have an intuitive understanding how our 
geometrical view generalizes to more dimensions:
• Corners correspond to solutions of equation systems.
• Inequalities partition restrict the solution space to 

halfspaces.

Find a feasible corner (somehow).
Check neighboring corners and see if one is better.
Move over to the next corner until no better 
neighboring solution exists.
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Analysis

• Algorithm Idea
Find a feasible corner (somehow).
Check neighboring corners and see if one is better.
Move over to the next corner until no better 
neighboring solution exists.

• Open Questions
– Can we find a mathematical formalization of linear 

optimization problems for which we can define what 
“corner” and “neighboring corner” means?

– Can we prove optimality?
– How do we find a feasible starting solution?
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What is a corner?

• A corner in our geometrical view is defined by the 
intersection of two lines. And a line is defined by an 
equation a corner is a solution to an equation-system!

• What if there are more than two variables? How does an 
inequality look like then?
– Given x,y,z, how does x ¥ 1 look like?
– Given x,y,z, how does x+y+z = 1 look like?
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Equation Systems

• So an equation in an n-dimensional space defines 
an  n-1-dimensional hyperplane!
– n = 2: equations define lines
– n = 3: equations define planes

• Every inequality divides the space in two                 
halfspaces!

• A corner in an n-dimensional space is defined by 
the intersection of n hyperplanes. Therefore, a 
corner defines a solution to an equation system 
and vice versa.
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Mathematical Foundations

• We shall now define and study formally 
– what corners are, 
– how they correspond to basic solutions of equation 

systems,
– what neighboring corners are, and
– how optimal solutions to LPs are characterized.
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Convex Sets

• Definition
– Assume that {a1,…,am} ⊆ Ñn and α1,…,αm œ Ñ¥0.
– Êi αi ai is called a non-negative linear combination.
– In case that Êi αi = 1, we call  Êi αiai a convex 

combination. It is called true convex combination
iff α1,…,αm œ Ñ>0.

– We define κ(a1,…,am) as the set of all convex 
combinations of a1,…,am.

– For a,b œ Ñn, κ(a,b) is called the line between                
a and b.

– A set K ⊆ Ñn is called convex, iff for all a,b œ K: 
κ(a,b) ⊆ K.
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Convex Sets

Convex Not Convex

κ(a,b)

a

b



CS 195 - Intro to CO 9

Convex Sets

• Remark
– If K ⊆ Ñn is convex and a1,…,am œ K, then 

κ(a1,…,am) ⊆ K.
– The intersection of convex sets is convex.

• Proof:
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Convex Sets

• Examples
– Let a œ Ñn, a ≠ 0, and α œ Ñ. H = {x œ Ñn | aTx = α} 

is called a hyperplane and is convex.
– Let A œ Ñm x n and b œ Ñm. V = {x œ Ñn | Ax = b} is 

called affine vector space and is convex.
– Let a œ Ñn, a ≠ 0, and α œ Ñ. H¥ = {x œ Ñn | aTx ¥ α} 

is called halfspace and is convex.
– P = {x œ Ñn | Ax = b and x ¥ 0} is convex.
– D = {x œ Ñn | ||x||2 ≤ 1} is convex.
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Convex Sets

• Definition
– For M ⊆ Ñn, we define                                                    

κ(M) := Uk œ ô, a1,…,ak œ M κ(a1,…,ak).
– κ(M) is called the convex hull of M.

• Remark
– It holds that κ(M) equals the intersection of all 

convex sets that contain M. Thus, κ(M) is the 
smallest convex set that contains M.
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Extreme Points

• Definition
– A point x œ K, K ⊆ Ñn convex, is called extreme 

point, iff it cannot be represented as a true convex 
combination of two points in K. We denote the set 
of all extreme points of K with ε(K).

• Remark: Given K ⊆ Ñn convex, the following 
statements are equivalent:
– x0 is an extreme point of K.
– For all a,b œ K with x0 œ κ(a,b) it is x0=a or x0=b.
– For all y œ Ñn, y ≠ 0 it is x0 + y ∉K or x0 - y ∉K.
– K\{x0} is convex. 
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Extreme Points

• Examples
– ε({x œ Ñn | x ¥ 0}) =
– ε(H¥) =
– ε(D) =
– ε({ x | ||x||2 < 1}) =
– ε({1}) = 

{0}
∅

{x œ Ñn | ||x||2 = 1}  
∅

{1}
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Convex Polyeders

• Definition
– A convex polyeder (convex polyhedron) P is 

defined as the finite intersection of halfspaces, i.e.        
P = ∩ H¥ = {x | Ax ¥ b}. 

– A convex polyeder P ≠ ∅ that is bounded is called 
(convex) polytope.

– A hyperplane H is called supporting plane of P iff
H ∩ P ≠ ∅ and P ⊆ H¥.

– If H ∩ P = {x0}, then x0 is called a corner of P. 
– If H ∩ P = κ(a,b) for some a,b œ P, then κ(a,b) is 

called an edge of P.
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Theorem

• Let P denote a convex polyeder.
– Every corner of P is an extreme point.
– P is the convex hull of its corners.

• Proof:
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Basic Solutions and Corners
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Basic Solutions

• Definition
– Given A œ Ñm x n with rank(A) = m ≤ n, b œ Ñm, let          

B : ôm ôn, N : ôn-m ôn injective such that              
B(ôm) U N(ôn-m) = ôn and AB = (aB(1),…,aB(m)) with 
rank(AB) = rank(A) = m.

– When setting xB := AB
-1 b and xN := 0, we call                 

xT := (xB
T,xN

T) basic (feasible) solution of Ax = b. x 
is called feasible, iff x ¥ 0. 
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Basic Solutions

• Remark 

• Theorem
– Let A œ Ñm x n with rank(A) = m ≤ n and b œ Ñm.                             

For x0 œ P := {x œ Ñn | Ax=b and x ¥ 0} it is equivalent to say:
• x0 is extreme point of P.
• {aj | x0

j > 0 } is linear independent.
• x0 is basic feasible solution
• x0 is a corner of P.

bAbAAxAxA
x
x

AAAx NBBNNBB
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Basic Solutions

• Corollary
– 0 œ P ⇒ 0 œ ε(P)
– Every corner has at most m entries that differ from 0!

– S has at most          corners!

• Definition
– A corner is called degenerated iff | { j | xj > 0} | < m.

• Remark
– If x0 is not degenerated, the corresponding basis is uniquely 

defined!

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
m
n
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Basic Solutions - Degeneracy

X1 + 2 X2 ≤ 80
X1 +    X2 ≤ 55
X1 ≤ 35

X2 ≤ 30

X2 ≤ 27

X1 ≤ 32
X1

X2
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24 26 28 30 32X1, X2 ¥ 0

2 X1 +    X2 ≤ 85
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Optimal Solutions

• Definition
– For P ≠ ∅ we define                                                      

C(P) := { y œ Ñn | ∀ x œ P, λ > 0 : x + λy œ P}, and 
we say that C(P) is the set of directions of P.

• Remark
– C(P) = { y œ Ñn | Ay = 0 and y ¥ 0}

• Theorem
– P = κ (ε(P)) + C(P) 
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P

Optimal Solutions

κ (ε(P))

ε(P)

C(P)
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Optimal Solutions

• Corollary
– P ≠ ∅ ⇒ P has corners!
– If P contains an optimal solution, then there exists a 

corner with optimal objective value!
– If P ≠ ∅ and P has no optimal solution, then there 

exists y œ C(P) such that cTy < 0.
– If P ≠ ∅ and P is bounded, then P = κ (ε(P)).
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Optimal Solutions

• Remark
– The previous corollary yields an algorithm: 

Determine all basic solutions, eliminate all that are 
infeasible, and pick the one with the best objective 
function value. 

– What is the runtime of that algorithm?
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Basis Changes

• Given x0T = (x0
B

T,x0
N

T) a basic feasible solution (i.e.                 
x0

B = AB
-1 b, x0

N = 0, and x0 ¥ 0) and x œ Ñn such that                
Ax = b, assume that for y := x-x0 œ Ñn it holds that Ay = 0.

• It holds yN = xN. Because of   

we have that

NNBB yAyAAy +==0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=⇒−=

−
−

N

NNB
NNBB x

xAA
yxAAy

        
         

1
1



CS 195 - Intro to CO 26

Basis Changes

• Assume that we set specifically xN= ek œ Ñn-m,         
t := N(k), and A := AB

-1 A.
• Then, we have that yB = -at := - AB

-1 at. And 
therefore, yT = (-at T

(B) , ek
T

(N) ).

• For λ œ Ñ and xλ := x0 + λy, we thus have Axλ = b.

• ⇒ xλ is feasible.
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<
−

≤≤ 0|min0 )(
)(

0
)(

jB
jB

jB y
y

x
λ



CS 195 - Intro to CO 27

Basis Changes

• Theorem
– If there exists yB(j) < 0, we choose λ as large as 

possible (λ < ∞). Then, x1:=xλ is a basic feasible 
solution. The corresponding basis is given by                
B*(i) := B(i) if i ≠ r, and B*(r) := t, whereby r such that 
λ = x0

B(r) / -yB(r) = min {x0
B(i) / -yB(j) | yB(j) < 0}.

– If yB ¥ 0, then y (defined as before) is greater or  
equal 0, and thus: xλ = x + λy is feasible for all λ ¥ 0.

• Definition
– A solution x1 obtained by an exchange as discussed 

above with 0 < λ < ∞ is called a neighboring corner
of x0.
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Basis Changes

• Remark
– If                                                              

then x1= x0 is degenerated.

– If r in the previous theorem is not unique, then   
x1 is degenerated.
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Objective Function Change

• Assume that λ < ∞ and we found a neighboring corner x1. 
Then:
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Objective Function Change

• Definition
– We set                                                   and call the 

s’th component of this vector the relative costs of 
column as (with respect to B).

• Theorem
– When changing the solution from x0 to x1, the 

costs change by                                                 
. 

– If c-z ¥ 0, then x0 is optimal!
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An Example

• Min - x - y 
• 2x - 4y ≤ 2
• 2x - y ≤ 8
• -2x +  y ≤ -2
• -2x - 2y ≤ -4
• y ≤ 6
• x,y ¥ 0
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What have we achieved?

• The solution space of a linear programming problem is a 
convex polyeder. Corners of such a polyeder correspond 
to extreme points which correspond to basic feasible 
solutions.

• An optimal solution, if it exists, can always be found in a 
corner!

• Given a basic feasible solution, we can find a neighboring 
corner by exchanging exactly one basis column – which 
corresponds to following the direction given by a solution 
to the homogenous equation system!

• An improved basic feasible solution is found iff the corner 
is not degenerated and if the relative costs of the column 
that is introduced are negative. If no such column exists, 
the current solution is optimal!



Thank you!Thank you!


