Chapter 1 Linear Programming

Paragraph 7 Standard Formats MPS, LP, and the CPLEX callable Library

What we did so far

- We studied algorithms for solving linear programs
 - Simplex (primal, dual, and primal-dual)
 - Ellipsoid Method
 - Interior Point Algorithms
- Why is it called: linear programming?
 - You do not need to implement these algorithms anymore, there exists standard solvers!
 - Therefore, to "solve" a linear programming problem, all you need is to formulate the LP and hand it over to a solver.

"Languages for Linear Programming"

- Keeping the general terminology, the "languages" of linear programming are modeling languages in which we can express linear programs.
- Probably one of the oldest formats in which LPs can be stated is the MPS format from IBM.
- A more intuitive and also widely used format is the LP-Format.
- In order to reduce the overhead, solvers like CPLEX specify their own callable library interface.

 Developed during the punch card era, MPS is column oriented:

	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6
Columns	2-3	5-12	15-22	25-36	40-47	50-61
Contents	Indicator	Name	Name	Value	Name	Value

- The input is further segmented horizontally by
 - a ROWS section and a COLUMNS section.
 - It may also contain optional NAME, RHS, RANGES, and BOUNDS sections.
 - These keywords are the only parts of the MPS-file that start in column 1.
 - Each section in an MPS format input must contain at least one data line, with the exception of the NAME section.
- All MPS files must terminate with an ENDATA line.

1	2-3	4	5-12	15-22	25-36	40-47	50-61
Ν	AM	Е					
R	OW	S					
С	OL	U	MNS				
R	HS						
Е	ND	D	ATA				

- The NAME section
 - Keyword NAME in columns 1-4
 - Title of the LP is columns 15-22
- The ROWS section
 - Purpose: label each row and assign a type
 - Row-type in columns 2-3:
 - E =
 - L <=
 - G >=
 - N first such row: objective, otherwise no restriction

– Assign a name in columns 5-12

	2.2	4	E 10	15.00	25.26	40.47	E0 61
	2-3	4	5-12	15-22	25-30	40-47	10-00
Ν	AM	Е		example			
R	OW	S					
	Ν		obj				
	L		r1				
	G		r2				
С	OL	U	MNS				
R	HS						
Е	ND	D	ATA				

- The COLUMNS section
 - Purpose: Specify the tableau column by column
 - Label each column (for example with the name of the corresponding variable) in columns 5-12
 - For each non-zero entry of the current tableaucolumn, give the entry by first giving the row label and then the numerical value.
 - At most two entries can be made per row in the MPS-file. For more entries, continue the specification of the current column in the next rows.

1	2-3	4	5-12	15-22	25-36	40-47	50-61
Ν	AM	E		example			
R	OW	S					
	Ν		obj				
	L		r1				
	G		r2				
С	OL	U	MNS				
			x	obj	1	r1	1
			x	r2	2		
			у	obj	-2.3	r1	-1
			z	obj	0.5	r2	-1
			S	r2	-1	r1	1
R	HS						
Е	ND	D	ATA				

- The RHS section
 - Purpose: Specify the ride hand side of the tableau
 - Like every other column and row, also the ride hand side gets a label in columns 5-12
 - For each non-zero entry of the right hand side, the entry is specified by first giving the row label and then the numerical value.
 - At most two entries can be made per row in the MPS-file. For more entries, continue the specification of the right hand side in the next rows.

1	2-3	4	5-12	15-22	25-36	40-47	50-61
Ν	AM	E		example			
R	OW	S					
	Ν		obj				
	L		r1				
	G		r2				
С	OL	U	MNS				
			x	obj	1	r1	1
			x	r2	2		
			у	obj	-2.3	r1	-1
			z	obj	0.5	r2	-1
			S	r2	-1	r1	1
R	HS						
			rhs	r1	10.75	r2	-100
Е	ND	D	ATA				

- The format is old and strange.
 - The punch-card organization of the data is outdated and annoying.
 - All variables are implicitly assumed to be nonnegative (this could be changed in the BOUNDS section, though).
 - The objective direction is not specified!
- However, it is the industry standard, the standard benchmark MIPlib uses MPS, and most solvers accept input in this form. If a solver does not, there is a good chance that there exists a converter from MPS to the expected input format.

- Like MPS, a linear program in LP format is also segmented in sections:
 - Problem
 - Objective
 - Constraints and
 - Bounds (optional)
- The model starts with the keyword 'Problem' and is terminated with 'End'

Problem		
End		

- The Problem section
 - Provide a name of the LP in the following line
- The Objective section
 - Specify the objective direction (Maximize or Minimize)
 - In the next line, specify a label for the objective followed by a colon.
 - Then give the objective.

Problem
example
Maximize
obj: x – 2.3y + 0.5z
End

- The Constraint section
 - Start with the keywords Subject To (or ST).
 - In the following lines, start adding constraints by labeling them (name plus colon) and then giving the equation or inequality.
- The Bounds section
 - Start with the keyword Bounds.
 - State the bounds of variables
 - inf, -inf, and free are keywords
 - Default is $x \ge 0$.

Problem
example
Maximize
obj: x – 2.3y + 0.5z
Subject To
r1: x – y + s <= 10.75
r2: -z + 2x – s >= -100
End

- The library was written in C.
- Instead of writing out an MPS or LP file from an application and having the solver read it back in, the data is better passed over within the RAM.
- Instead of passing over the entire mxn-matrix, CPLEX expects a sparse representation where only the non-zero entries are handed over.
- We only discuss the sparse vector data structure here. For more details check /com/cplex/doc/pdf/refcallablelibrary.pdf.

	0	1	2	3
0	3	0	5	9
1	6	2	0	1
2	0	0	1	3

• We would like to compress this matrix to:

#nz	0	1	2	3	4	5	6	7
rmatval	3	5	9	6	2	1	1	3

	0	1	2	3
0	3	0	5	9
1	6	2	0	1
2	0	0	1	3

• Since we lost this info, we need to add the column indices:

#nz	0	1	2	3	4	5	6	7
rmatval	3	5	9	6	2	1	1	3
rmatind	0	2	3	0	1	3	2	3

• Finally, we need to add information where new rows start:

#nz	0	1	2	3	4	5	6	7
rmatval	3	5	9	6	2	1	1	3
rmatind	0	2	3	0	1	3	2	3

Thank you!

