Chapter 1 Linear Programming

Paragraph 2 Developing Ideas for an Algorithm solving Linear Optimization

What we did so far

- How to model an optimization problem
 - Data, Variables, Constraints, Objective
- We have seen that optimization consists of two tasks:
 - Finding a feasible solution and
 - Optimization
- Examples
 - Transportation Problem: specialized algorithm | optimality?
 - Diet Problem, Production Planning: geometrical solution | more than two/three variables?

What we did so far

- We established a formal definition what kind of problems we want to be able to solve: Linear Optimization Problems. A whole variety of optimization problems can be modeled that way!
- We established a standard form in which linear optimization problems can be modeled!

The Linear Optimization Problem

- Definition
 - Assume we are given a matrix $A \in \mathbb{R}^{mxn}$, and vectors $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$.
 - Setting $P_{A,b} := \{ x \in \mathbb{R}^n | Ax = b \text{ and } x \ge 0 \}$ and $z_c(x) := c^T x$, $(P_{A,b}, z_c)$ defines an optimization instance. Such an instance is called an instance of the Linear Optimization Problem. We say that it has Standard Form.
 - When setting $K_{A,b} := \{ x \in \mathbb{R}^n | Ax \ge b \text{ and } x \ge 0 \}$ and $z_c(x) := c^T x$, $(K_{A,b}, z_c)$ defines an optimization instance. Such an instance is also called an instance of the Linear Optimization Problem. We say that it has Canonical Form.

The Standard Form of Linear Optimization

- Lemma
 - Standard and canonical form of linear optimization are "equivalent".
 - Optimization problems for which not all components of the solution are required to be non-negative can be expressed in standard (or canonical) form.

- Transportation Problem
 - We constructed a feasible solution first.
 - We then changed our solution while maintaining feasibility until no further improvement by re-routing was possible.
- Diet Problem and Production Planning
 - We modeled our problem with inequalities.
 - We visualized the feasible region graphically.
 - We solved our problem by improving the objective until any further improvement of the objective would have yielded to an infeasible solution.

Current Limitations

- The first algorithm sketch appears more general, but so far it only works for the transportation problem and optimality has not been proven.
- We do not know how to solve problems graphically when there are more than two variables involved.

Could we combine the geometrical view with ideas from our first method to achieve a more generally applicable solution method?

Towards a combination

- Let us try to develop a specialized algorithm production planning following the first idea.
- We can then apply the specialized algorithm and observe what happens in the geometrical interpretation.

- Production Planning
 - given a set of resources that are available in limited amounts
 - given goods that we want to produce whereby for each good we need a specific amount of each resource
 - Every unit of each good produced yields a certain profit.
 - Decide what amount of each good should be produced such that the resources suffice and the profit is maximized!

- Constants
 - a_r: maximum available amount of resource r
 - c_{rg}: how many units of resource r are needed for the production of one unit of good g
 - p_g : profit per unit of good g produced
- Variables
 - X_g : How many units of good g shall be produced?
- Constraints
 - $\Sigma_g X_g c_{rg} \le a_r$ for all resources r
- Objective
 - Maximize $\Sigma_{g} p_{g} X_{g}$

 $X_1 + 2 X_2 \le 80$ 80 \$5.95 $X_1 + X_2 \le 55$ 0 55 X_1 ≤ 35 35 30 X_1 $X_2 \le 30$ $X_2 \le 27$ \$8.95 27 X₂ 0 32 ≤ 32 X_1

CS 149 - Intro to CO

- 1. Construct a feasible solution first.
- 2. Change the solution while maintaining feasibility until no further improvement is possible.
- 1a No production at all is feasible.
- 1b Produce as much of the product that yields the highest profit until the most limited resource is exhausted.

- 1. Construct a feasible solution first.
- 2. Change the solution while maintaining feasibility until no further improvement is possible.
- 1a No production at all is feasible.
- 1b Produce as much of the product that yields the highest profit until the most limited resource is exhausted.
- 2 If it yields an increase, trade the more expensive product for the less expensive one while maintaining feasibility. Repeat.

What happens in the geometrical interpretation?

Ananlysis

Algorithm Idea

Find a feasible corner (somehow). Check neighboring corners and see if one is better. Move over to the next corner until no better neighboring solution exists.

- Open Questions
 - Can we find a mathematical formalization of linear optimization problems for which we can define what "corner" and "neighboring corner" means?
 - Can we prove optimality?
 - How do we find a feasible starting solution?

What is a corner?

- A corner in our geometrical view is defined by the intersection of two lines. And a line is defined by an equation ⇒ a corner is a solution to an equation-system!
- What if there are more than two variables? How does an inequality look like then?
 - Given x,y,z, how does $x \ge 1$ look like?
 - Given x,y,z, how does x+y+z = 1 look like?

Equation Systems

- So an equation in an n-dimensional space defines an n-1-dimensional hyperplane!
 - n = 2: equations define lines
 - n = 3: equations define planes
- Every inequality divides the space in two halfspaces!
- A corner in an n-dimensional space is defined by the intersection of n hyperplanes. Therefore, a corner defines a solution to an equation system and vice versa.

Short Linear Algebra Review

- How to solve a linear equation system.
- Provide one solution provide all solutions

Thank you!

