Chapter 1
Linear Programming

Paragraph 6
LPs in Polynomial Time

What we did so far

We developed a standard form in which all linear
programs can be formulated.

We developed a group of algorithms that solves
LPs in that standard form.

While we could guarantee termination, and the
“average” runtime is quite good, the worst-case
runtime of Simplex and its variants may be
exponential.

We shall now look into other algorithms for solving
LPs in polynomial time — guaranteed!

CS 149 - Intro to CO 2

The Ellipsoid Algorithm

 Whether or not LP was in P was a long
outstanding question.

* Only in 1979, Soviet mathematician Khachian
proved that an algorithm for non-linear convex
minimization named Ellipsoid Method could
actually solve LPs in polynomial time.

 The method has important theoretical implications.
However, the performance is so bad that its
practical importance is immaterial.

CS 149 - Intro to CO 3

The Ellipsoid Algorithm

* |t can be shown that Linear Programming is
polynomially equivalent to finding a solution to a
system of strict linear inequalities (LSI): Ax <b.

* |t can further be shown:
— If an LSl is solvable, then so is the bounded system

* AX<Db
« —2D < x. < 2P where D is the binary size of the LSI.

— If an LSI has a solution, then {x | Ax <=b} must
have a minimal volume of 2-(n+1)b

CS 149 - Intro to CO 4

The Ellipsoid Algorithm

* The Algorithm works as follows:

1.Find an ellipsoid that is guaranteed to contain all
solutions to the system.

2.1f the center of the ellipsoid is feasible:
return success!

3.If the volume of the ellipsoid is too small:
return not solvable!

4.Using a violated constraint, slice the ellipsoid Iin
half so that one side must contain all solutions.

5.Construct a new ellipsoid that covers the solution
containing half-ellipsoid and go back to step 2.

CS 149 - Intro to CO

The Ellipsoid Algorithm

-

CS 149 - Intro to CO

The Ellipsoid Algorithm

CS 149 - Intro to CO

The Ellipsoid Algorithm

CS 149 - Intro to CO

The Ellipsoid Algorithm

* Crucial to the polynomial runtime guarantee is the
following key lemma:

— Every half-ellipsoid is contained in an ellipsoid
whose volume is less than e 72" times the
volume of the original ellipsoid.

« Corollary

— The smallest ellipsoid containing a polyhedron P
has its center in P.

— The inner loop of the ellipsoid algorithm is carried
out at most a polynomial number of times.

CS 149 - Intro to CO 9

Implications

* The two most important implications of the
ellipsoid algorithm are:

— LPs are solvable in polynomial time.

— A linear program is polynomial time solvable even if
all we can do efficiently is to provide a violated
hyperplane when a suggested solution is violated.

* An algorithm that does the latter is called a
. If we can provide a violated
linear constraint in polynomial time, we can even
solve LPs with an exponential number of
constraints!

CS 149 - Intro to CO 10

Constraint Generation for a
Lower Bound of TSP

« The Traveling Salesman Problem
— Given a weighted graph (V,E,c), find a roundtrip that visits
each node once such that the total distance is minimal.
— We formulate this an integer program (IP):
1. Min 2, cg c; X; such that
YipeeX; =1 forallieV
SipeeX; =1 foralljeV
Yiesiews X221 foraldCcSCV
x; € {0,1}
« To get a lower bound on the objective, we can relax (5)
to x;; 2 0. But: The number of constraints is exponential!

 Can we find a separation oracle?

a s~ e

CS 149 - Intro to CO 11

Interior Point Algorithms

Linear Programming is also polynomially
equivalent to finding the maximum objective value
of max p'x, Ax < b whereby for

{x | Ax < b} it is easy to find an interior solution.

What prevents us actually from using methods
from calculus to solve our problem?

The non-differentiable shape of the polytope
(corners!) causes problems.

Can we smoothen the shape of the feasible
region?

CS 149 - Intro to CO 12

Interior Point Algorithms

Instead of enforcing that solutions are within the feasible
region via inequalities, instead we can make solutions
more and more unattractive the closer we get to the
border.

This idea yields to the notion of

— A barrier function goes to - as Ax — b and should be
differentiable.

— max p'x +a (I log (x;) + Z; log (T a;x; — by))

Using standard methods from calculus, we can maximize
such functions = Newton method

By decreasing the barrier parameter a, we get closer and
closer to the true maximal value.

CS 149 - Intro to CO

13

Interior Point Algorithms

CS 149 - Intro to CO

14

Interior Point Algorithms

CS 149 - Intro to CO

15

Thank you!

