
Chapter 1
Linear Programming

Paragraph 6
LPs in Polynomial Time

CS 149 - Intro to CO 2

What we did so far

• We developed a standard form in which all linear
programs can be formulated.

• We developed a group of algorithms that solves
LPs in that standard form.

• While we could guarantee termination, and the
“average” runtime is quite good, the worst-case
runtime of Simplex and its variants may be
exponential.

• We shall now look into other algorithms for solving
LPs in polynomial time – guaranteed!

CS 149 - Intro to CO 3

The Ellipsoid Algorithm

• Whether or not LP was in P was a long
outstanding question.

• Only in 1979, Soviet mathematician Khachian
proved that an algorithm for non-linear convex
minimization named Ellipsoid Method could
actually solve LPs in polynomial time.

• The method has important theoretical implications.
However, the performance is so bad that its
practical importance is immaterial.

CS 149 - Intro to CO 4

The Ellipsoid Algorithm

• It can be shown that Linear Programming is
polynomially equivalent to finding a solution to a
system of strict linear inequalities (LSI): Ax < b.

• It can further be shown:
– If an LSI is solvable, then so is the bounded system

• Ax < b
• –2D < xi < 2D where D is the binary size of the LSI.

– If an LSI has a solution, then {x | Ax <=b} must
have a minimal volume of 2-(n+1)D.

CS 149 - Intro to CO 5

The Ellipsoid Algorithm

• The Algorithm works as follows:
1.Find an ellipsoid that is guaranteed to contain all

solutions to the system.
2.If the center of the ellipsoid is feasible:

return success!
3.If the volume of the ellipsoid is too small:

return not solvable!
4.Using a violated constraint, slice the ellipsoid in

half so that one side must contain all solutions.
5.Construct a new ellipsoid that covers the solution

containing half-ellipsoid and go back to step 2.

CS 149 - Intro to CO 6

The Ellipsoid Algorithm

CS 149 - Intro to CO 7

The Ellipsoid Algorithm

CS 149 - Intro to CO 8

The Ellipsoid Algorithm

CS 149 - Intro to CO 9

The Ellipsoid Algorithm

• Crucial to the polynomial runtime guarantee is the
following key lemma:
– Every half-ellipsoid is contained in an ellipsoid

whose volume is less than e-1/2(n+1) times the
volume of the original ellipsoid.

• Corollary
– The smallest ellipsoid containing a polyhedron P

has its center in P.
– The inner loop of the ellipsoid algorithm is carried

out at most a polynomial number of times.

CS 149 - Intro to CO 10

Implications

• The two most important implications of the
ellipsoid algorithm are:
– LPs are solvable in polynomial time.
– A linear program is polynomial time solvable even if

all we can do efficiently is to provide a violated
hyperplane when a suggested solution is violated.

• An algorithm that does the latter is called a
separation oracle. If we can provide a violated
linear constraint in polynomial time, we can even
solve LPs with an exponential number of
constraints!

CS 149 - Intro to CO 11

Constraint Generation for a
Lower Bound of TSP

• The Traveling Salesman Problem
– Given a weighted graph (V,E,c), find a roundtrip that visits

each node once such that the total distance is minimal.
– We formulate this an integer program (IP):

1. Min Σ(i,j) ∈ E cij xij such that
2. Σj:(i,j) ∈ E xij = 1 for all i ∈ V
3. Σi:(i,j) ∈ E xij = 1 for all j ∈ V
4. Σi ∈ S, j ∈ V\S xij ≥ 1 for all ∅ ⊂ S ⊂ V
5. xij ∈ {0,1}

• To get a lower bound on the objective, we can relax (5)
to xij ≥ 0. But: The number of constraints is exponential!

• Can we find a separation oracle?

CS 149 - Intro to CO 12

Interior Point Algorithms

• Linear Programming is also polynomially
equivalent to finding the maximum objective value
of max pTx, Ax ≤ b whereby for
{x | Ax ≤ b} it is easy to find an interior solution.

• What prevents us actually from using methods
from calculus to solve our problem?

• The non-differentiable shape of the polytope
(corners!) causes problems.

• Can we smoothen the shape of the feasible
region?

CS 149 - Intro to CO 13

Interior Point Algorithms

• Instead of enforcing that solutions are within the feasible
region via inequalities, instead we can make solutions
more and more unattractive the closer we get to the
border.

• This idea yields to the notion of barrier functions:
– A barrier function goes to -∞ as Ax → b and should be

differentiable.
– max pTx + α (Σi log (xi) + Σi log (Σj aijxi – bi))

• Using standard methods from calculus, we can maximize
such functions ⇒ Newton method

• By decreasing the barrier parameter α, we get closer and
closer to the true maximal value.

CS 149 - Intro to CO 14

Interior Point Algorithms

α = 1 α = 0.25

α = 0.5 α = 0.125

CS 149 - Intro to CO 15

Interior Point Algorithms

Thank you!Thank you!

