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Search and Inference

• As in Integer Programming, the general outline of 
the Constraint Programming methodology that we 
saw last week combines two fundamentally 
different approaches:
– An inference component: the shrinking of domain 

values by constraint filtering until no one constraint 
alone is able to remove any more values from the 
variables’ domains.

– A search component: backtracking is used if 
inference alone is not enough to reduce all domains 
to singletons or to prove insolvability.
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Constraint Satisfaction Problem

• Given a finite set of variables X = {X1,…,Xn}.
• Given a set of values V = {v1,…,vm}.
• Given a set of domains D = {D1,…,Dn} such that   Di ⊆ V.
• Given a set of constraints C = {C1,…,Ck} with                             

Ci: Πr∈Ri Dr → {true, false}. Ri is called the scope of 
constraint i. 

• We call a tuple A := (v1,…,vn) such that vi ∈ Di an 
assignment or solution. A is called feasible iff
Ci (A|Ri) = true for all i.

• The Constraint Satisfaction Problem (CSP) is given as 
(X,V,D,C) and asks for computing a feasible assignment or 
prove that none exists.
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Constraint Satisfaction Problem

• The way how the constraints are given is not specified in the previous 
definition.

• If the cardinality of the scope of all constraints is lower or equal two, 
we also speak of a binary CSP. 

• When the scopes are limited, one can afford to give the constraints as 
truth tables:

false3red
false 2red
true1red
false3blue
true2blue
true1blue
CiDsDr



CS 149 - Intro to CO 5

Implicit Enumeration

• We can solve a CSP by brute force enumeration, 
of course. In this case, we generate a solution and 
check feasibility, i.e. we only use constraints 
passively. This method is also known as Generate 
and Test.

• Again, in order to speed up our search, we need 
to enumerate the overwhelming part of the search 
space implicitly.

• How can we use constraints to accomplish this?
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Implicit Enumeration

• Generate and test methods are highly affected by 
a phenomenon that we call thrashing: 
– Say the domain of X1 was D1 = {1,…,m}. Say the 

scope of C1 was {X1}, and that it took value true iff
X1 ≥ m-3.

– Generate and test may try to set X1 = 1, X1 = 2, …
and always only recognize a failure when a full 
solution has been generated.

– The effect is called thrashing because all failures in 
a given subtree can be attributed to the same 
simple mis-assignment.
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Node Consistency

• The problem in the previous example can easily 
be rectified by using the unary constraints of a 
CSP actively.

• The effects of a unary constraint can simply be 
used to shrink the domain of the corresponding 
variable. If we do this for all unary constraints, we 
say that we achieved node consistency.

• When a domain runs empty, we know that no 
feasible solution can be found anymore, and we 
backtrack right away.
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Constraint Graph

• Given a binary CSP, we can visualize 
dependencies of variables by a constraint graph: 
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Arc Consistency

• Node consistency only avoids very simple forms of 
thrashing:
– Assume a constraint over two variables was true iff

X1 ≤ X2. Of course, we should never try 
assignments where this constraint is violated. In 
general: We can check constraints already when 
the variables in their scope have been assigned 
values.

– Thrashing goes further though: Assume D1 = {2,3}, 
D2 = {1,2}, D3 = {3,4}, and we have X1 ≤ X2, X3 ≤ X1. 
How can we detect these inconsistencies before 
assigning two or even all three variables?
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Arc Consistency

• A binary CSP is called arc-consistent iff for all 
constraints over Xi, Xj for all domain values in Di
(Dj) there exists a domain value in Dj (Di) that is 
consistent wrt the constraint.

• Efficient algorithms for achieving arc-consistency 
are the first step to an efficient CSP solver.
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Arc Consistency

procedure REVISE (i,j)
DELETED := false
for each v in Di do
if there is no such w in Dj such that (v,w) is consistent,     
i.e., no (v,w) satisfies all the constraints on Xi, Xj then

delete v from Di

DELETED := true
end_if

end_for
return DELETED

end REVISE
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Arc Consistency

procedure AC-3 (Constraint Graph G)
Q := {(i,j) | (i,j) is a directed arc in G, i ≠ j}
while Q ≠ ∅ do
select and delete (i,j) from Q
if REVISE (i,j) then
Q := Q ∪ {(p,i) | (p,i) is a directed arc in G, p≠i, p≠j}.

end_if
end_while

end AC-3
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Arc Consistency

• What is the computational complexity of the 
proposed method AC-3?

• For a binary constraint network, if there are n 
nodes, domain size is d and there are a arcs, the 
complexity of AC-3 is O(ad3).

• Can this complexity be improved upon? Note that 
a lot of work is done many times by checking all 
domain values even if their supporting counterpart 
has not been removed!



CS 149 - Intro to CO 14

Arc Consistency

procedure AC-4 (G)
Q := INITIALIZE(G)
while Q ≠ ∅ do
select and delete any variable/value pair <j,w> from Q
for each <i,v> from the set of supported values Sj,w do
counter[(i,j),v] := counter[(i,j),v] - 1
if counter[(i,j),v] = 0 & v is still in Di then
delete v from Di
Q := Q ∪ {<i,v>}

end_if
end_for

end while
end AC-4
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Arc Consistency

• It can be shown: The time-complexity of AC-4 is in 
O(ad2). This is optimal!

• However, AC-4’s memory requirements are 
prohibitively large in practice.

• Improvements like Bessiere et al.’s AC-6 reduce 
those memory requirements as well.
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Search Management

• As we investigated it for Integer Programming, we need to 
make decisions on how we want to organize our backtrack 
search.

• Branching Variable Selection
– Smallest Domain - First Fail Strategy

• Branching Direction (or Value) Selection
– First Succeed Strategy

• Assignment Selection 
• Search Strategy

– Limited Discrepancy Search
– Depth-bounded Discrepancy Search
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Backtrack-Free Search

• Arc-consistency improves the efficiency of CSP 
search algorithms tremendously.

• However, in general search is still needed, and 
the insoluability of CSPs may only be  proven after 
extensive search.

• Like we investigated total unimodularity for IPs, 
there are also conditions, under which we can 
show that our inference technique allows us to 
solve CSPs in polynomial time: One such 
condition is that the constraint graph is cycle-free! 
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Generalized Arc-Consistency

• Many important constraints involve more than just 
two variables.

• The best we can hope for with respect to a 
constraint involving n variables is that we can 
guarantee that:
– For every domain value of variable i
– There exists an assignment to the remaining 

variables
– Such that the constraint is  fulfilled.
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Generalized Arc-Consistency

• Consider the AllDifferent constraint:
– X1,…,Xn must take pairwise different values

• Note that arc-consistency on constraints Xi≠Xk
cannot detect inconsistency of the following 
situation:
– D1 = {1,2}, D2 = {1,2}, D3 = {1,2}

• How can we achieve generalized arc-consistency 
for the (global) AllDifferent Constraint?
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AllDifferent
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AllDifferent
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AllDifferent
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Thank you!Thank you!


