Chapter 3
Constraint Programming

Paragraph 2
Constraint Programs and Consistency



Search and Inference

* As in Integer Programming, the general outline of
the Constraint Programming methodology that we
saw last week combines two fundamentally
different approaches:

— An inference component: the shrinking of domain
values by constraint filtering until no one constraint

alone is able to remove any more values from the
variables’ domains.

— A search component: backtracking is used if
Inference alone is not enough to reduce all domains
to singletons or to prove insolvability.
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Constraint Satisfaction Problem

Given a finite set of variables X = {X,,...,.X.}.
Given a set of values V = {v,,...,v}.
Given a set of domains D = {D,,...,D,} such that D,c V.

Given a set of constraints C = {C,,...,C,} with
C;: Il _g D, — {true, false}. R, is called the scope of
constraint i.

We call a tuple A := (v',...,v") such that v' € D, an
assignment or solution. A is called feasible iff
C, (A|r) = true for all i.

The Constraint Satisfaction Problem (CSP) is given as
(X,V,D,C) and asks for computing a feasible assignment or
prove that none exists.
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Constraint Satisfaction Problem

The way how the constraints are given is not specified in the previous
definition.

If the cardinality of the scope of all constraints is lower or equal two,
we also speak of a binary CSP.

When the scopes are limited, one can afford to give the constraints as
truth tables:

D, D, C.
blue 1 true
blue 2 true
blue 3 false

red 1 true
red 2 false
red 3 false
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Implicit Enumeration

* We can solve a CSP by brute force enumeration,
of course. In this case, we generate a solution and
check feasibility, i.e. we only use constraints
passively. This method is also known as Generate
and Test.

* Again, in order to speed up our search, we need
to enumerate the overwhelming part of the search
space implicitly.

 How can we use constraints to accomplish this?
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Implicit Enumeration

« Generate and test methods are highly affected by
a phenomenon that we call thrashing:

— Say the domain of X, was D, = {1,...,m}. Say the
scope of C, was {X,}, and that it took value true iff
X; 2 m-3.

— Generate and test may trytoset X, =1, X, =2, ...
and always only recognize a failure when a full
solution has been generated.

— The effect is called thrashing because all failures in
a given subtree can be attributed to the same
simple mis-assignment.
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Node Consistency

* The problem in the previous example can easily
be rectified by using the unary constraints of a
CSP actively.

* The effects of a unary constraint can simply be
used to shrink the domain of the corresponding
variable. If we do this for all unary constraints, we
say that we achieved node consistency.

 When a domain runs empty, we know that no
feasible solution can be found anymore, and we
backtrack right away.
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Constraint Graph

* Given a binary CSP, we can visualize
dependencies of variables by a constraint graph:
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Arc Consistency

* Node consistency only avoids very simple forms of
thrashing:

— Assume a constraint over two variables was true iff
X, = X,. Of course, we should never try
assignments where this constraint is violated. In
general: We can check constraints already when
the variables in their scope have been assigned
values.

— Thrashing goes further though: Assume D, = {2,3},
D, ={1,2}, D; = {3,4}, and we have X, = X,, X, = X,.
How can we detect these inconsistencies before
assigning two or even all three variables?
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Arc Consistency

* A binary CSP is called arc-consistent iff for all
constraints over X;, X; for all domain values in D;

(D,) there exists a domain value in D; (D)) that is
consistent wrt the constraint.

 Efficient algorithms for achieving arc-consistency
are the first step to an efficient CSP solver.

CS 149 - Intro to CO 10



Arc Consistency

procedure REVISE (i,j)
DELETED := false
for each v in D, do

if there is no such w in D; such that (v,w) is consistent,
l.e., no (v,w) satisfies all the constraints on X;, X; then

delete v from D,
DELETED := true
end_if
end_for
return DELETED
end REVISE
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Arc Consistency

procedure AC-3 (Constraint Graph G)
Q :={(i,) | (i,j) is a directed arc in G, i # |}
while Q # @ do
select and delete (i,j) from Q
if REVISE (i,j) then
Q:=Qu{(p,i)| (p,i) is a directed arc in G, p#i, p#j}.
end_if
end_while
end AC-3
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Arc Consistency

* What is the computational complexity of the
proposed method AC-3?

* For a binary constraint network, if there are n
nodes, domain size is d and there are a arcs, the
complexity of AC-3 is O(ad?).

» Can this complexity be improved upon? Note that
a lot of work is done many times by checking all
domain values even if their supporting counterpart
has not been removed!
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Arc Consistency

procedure AC-4 (G)
Q := INITIALIZE(G)
while Q # & do
select and delete any variable/value pair <j,w> from Q
for each <i,v> from the set of supported values S;,, do
counter](i,j),v] := counter](i,j),v] - 1
if counter([(i,j),v] = 0 & v is still in D, then
delete v from D,
Q= Qu{<i,v>}
end _if
end_for
end while
end AC-4
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Arc Consistency

* It can be shown: The time-complexity of AC-4 is in
O(ad?). This is optimal!

 However, AC-4’s memory requirements are
prohibitively large in practice.

* Improvements like Bessiere et al.'s AC-6 reduce
those memory requirements as well.
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Search Management

As we investigated it for Integer Programming, we need to
make decisions on how we want to organize our backtrack
search.

Branching Variable Selection
— Smallest Domain - First Fail Strategy

Branching Direction (or Value) Selection
— First Succeed Strategy

Assignment Selection

Search Strategy
— Limited Discrepancy Search
— Depth-bounded Discrepancy Search
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Backtrack-Free Search

* Arc-consistency improves the efficiency of CSP
search algorithms tremendously.

* However, in general search is still needed, and
the insoluability of CSPs may only be proven after
extensive search.

» Like we investigated total unimodularity for IPs,
there are also conditions, under which we can
show that our inference technique allows us to
solve CSPs in polynomial time: One such
condition is that the constraint graph is cycle-free!
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Generalized Arc-Consistency

* Many important constraints involve more than just
two variables.

* The best we can hope for with respect to a
constraint involving n variables is that we can
guarantee that:

— For every domain value of variable i

— There exists an assignment to the remaining
variables

— Such that the constraint is fulfilled.
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Generalized Arc-Consistency

 Consider the AllDifferent constraint:
- X,,...,X, must take pairwise different values

* Note that arc-consistency on constraints X:#X,
cannot detect inconsistency of the following
situation:

o D1 = {1 52}’ D2 = {1 ’2}’ D3 = {1 ’2}

 How can we achieve generalized arc-consistency
for the (global) AllDifferent Constraint?
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AllDifferent

—
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AllDifferent
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AllDifferent
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Thank you!




