
Chapter 2
Integer Programming

Paragraph 2
Branch and Bound

CS 149 - Intro to CO 2

What we did so far

• We studied linear programming and saw that it is
solvable in P.

• We gave a sufficient condition (total unimodularity)
that simplex will return an integer solution.
– Shortest Path
– Minimum Spanning Tree
– Maximum Flow
– Min-Cost Flow

• How can we cope with general integer programs?

CS 149 - Intro to CO 3

Tree Search

• As an example, assume we have to solve the
Knapsack Problem.

• Recall that there are 2n possible combinations of
knapsack items.

• The brute-force approach to solve the problem is
to enumerate all combinations, see which ones
are feasible, and which one of those achieves
maximum profit.

• A systematic way of enumerating all solutions is
via backtracking.

CS 149 - Intro to CO 4

Tree Search

• Assume we order the variables x1,..,xn.
• A recursive way of enumerating all solutions is to

set x1 to 0 first and to recursively enumerate all
solutions for KP(x2,..,xn, p, w, C). Then we set
x1 to 1 and enumerate all solutions for
KP(x2,..,xn, p, w, C-w1).

• This procedure yields to a search tree!

CS 149 - Intro to CO 5

Tree Search

x1

x2

x3

← 0 1 →

← 0 1 →

← 0 1 →

x = (1,0,0)T

CS 149 - Intro to CO 6

Combinatorial Explosions

• Enumerating all possible solutions is of course not feasible
when there are too many items.

• What is “too many”?
– 500? 200? 100? 50? 10?
– Take a guess!

• Assume we can investigate 1 solution per cpu cycle at a
rate of 10 GHz (that’s 10 billion per second). Then,
enumerating all Knapsacks with 60 items takes more than
85 years!

• This effect is called a combinatorial explosion.
• If NP ≠ P, it cannot be avoided. However, we can aim at

pushing the intractable instance sizes as far as possible –
far enough to solve real-world instances. This is what
combinatorial optimization is all about!

CS 149 - Intro to CO 7

Implicit Enumeration

• We cannot afford to enumerate all combinations.
• We must try to enumerate the overwhelming part

of all combinations implicitly!
• The only way to do this is by intelligent inference.

– It is usually easy to find a first solution.
– The core question to ask for an optimization

problem is: Can we achieve a better solution?
– Answering this question is of course NP-complete.
– Consequently, we have to try to estimate

intelligently.

CS 149 - Intro to CO 8

Relaxations

• We can achieve an upper bound on an
optimization problem like Knapsack by computing
an optimal solution over a larger set of feasible
solutions.

• We can allow more solutions by getting rid of
some constraints - hopefully in such a way that the
relaxed problem is easier to solve.

• This approach is generally called a relaxation.
• The milder the effect of a relaxation on the

objective value, the better our estimate!

CS 149 - Intro to CO 9

Linear Relaxation

• The most commonly used relaxation consists in
dropping the constraint that variables be integer.

• In Knapsack for instance, we replace xi ∈ {0,1} by
0 ≤ xi ≤ 1.

• Then, optimizing the relaxed problem calls for
solving a linear program – and we know how to
optimize LPs quickly!

CS 149 - Intro to CO 10

Relaxations

• What does a relaxation give us?
– Dominance: If the relaxation value is lower (for minimization:

greater) or equal than the best known solution
 ⇒ All solutions with the current prefix are sub-optimal and

need not be looked at at all!
– Optimality: If the relaxation returns a feasible solution for our

original problem
 ⇒ This solution dominates all other feasible solutions, they

need not be looked at at all!
– Infeasibility: If the relaxation is infeasible
 ⇒ There exists no feasible solution with the current prefix, all

such combinations need not be looked at at all!
• In all these cases, we are not going to expand the search

tree below the current node further ⇒ We prune the search!

CS 149 - Intro to CO 11

Example

• Knapsack Instance
– Maximize

• 9 x1 + 3 x2 + 5 x3 + 3 x4

– such that
• 5 x1 + 2 x2 + 5 x3 + 4 x4 ≤ 10
• x1,x2,x3,x4 ∈ {0,1}

• LP Relaxation
– Maximize

• 9 x1 + 3 x2 + 5 x3 + 3 x4

– such that
• 5 x1 + 2 x2 + 5 x3 + 4 x4 ≤ 10
• 0 ≤ x1,x2,x3,x4 ≤ 1

CS 149 - Intro to CO 12

Example

x1

x2

x3

← ≤ 0 ≥ 1 →

X

XX

x4

15

10.25

8
10.25

6

10.25

8

15

14
15

14.25

12

CS 149 - Intro to CO 13

Branching Direction Selection

• In our general Branch-and-Bound scheme, we
have some liberty:
– Which node shall we look at next?
– Which variable should we branch on?

• We would like to dive into the search tree in order
to find a feasible solution (a lower bound) quickly.

• When diving, the question which node to pick next
comes down to: which of the two son nodes shall
we follow first?

CS 149 - Intro to CO 14

Example

x1

x2

x3

x4

15

10.25

15

14

15

≥ 1 ≤ 0

14.25

12

≤ 0≥ 1

X

≤ 0 ≥ 1

X
≥ 1≤ 0

CS 149 - Intro to CO 15

Branching Variable Selection

• In our general Branch-and-Bound scheme, we
have some liberty:
– Which node shall we look at next?
– Which variable should we branch on?

• In order to have a chance of improving our upper
bound, we need to branch on a fractional variable.

• In KP, there is exactly one.

CS 149 - Intro to CO 16

Example

15

1414.25

12

x3 ≥ 1x3 ≤ 0

X

x4 ≥ 1 x4 ≤ 0

CS 149 - Intro to CO 17

Liberties in B&B

• So far, we took the liberty to select our own
branching values and variables.
– Value selection is a special case of node selection

in depth first search.
• The way how we traverse the search tree is

generally determined by our search strategy.
– Variable selection is a special case of

branching constraint selection.
• Very many different ways to partition the search

space are possible.

CS 149 - Intro to CO 18

Search Strategies

• When choosing the next node, we would like:
– to find a near optimal solution quickly

(lower bound improvement in maximization)
– not to jump too much to make use of incremental

data-structures and keep the memory requirements
in limits.

CS 149 - Intro to CO 19

Search Strategies

– Depth First Search
• Finds feasible solutions quickly.
• Is very memory efficient.
• Can easily get stuck in sub-optimal parts of the

search space.
– Best First Search

• Look at the node with best relaxation value next.
• Is provably optimal in the sense that it never visits a

node that could be pruned otherwise.
• A lot of jumping is necessary and memory

requirements are prohibitively large (often search
degenerates to breadth first search).

CS 149 - Intro to CO 20

Search Strategies

– Depth First Search with Best Backtracking
• Is a mix of both depth and best first search: perform depth first

search until a leaf is found, then backtrack to the node with best
relaxation value and so on.

• Much less jumping than best first search.
• Is more memory efficient than best first search, but less than

DFS – could still be very memory intensive.
– Least Discrepancy Search

• Follow DFS with heuristic branching direction selection.
Investigate leaves in order of increasing discrepancy wrt that
heuristic.

• Memory requirements are within limits.
• Often finds good solutions early in the search.

CS 149 - Intro to CO 21

Branching Constraint Selection

• When partitioning the search space, we would like:
– to reduce the relaxation value as quickly as possible

(upper bound improvement in maximization)
– to avoid to double our workload which can happen

for example when choosing the wrong branching
variable

• The easiest way to partition the search is by
branching on one variable.

CS 149 - Intro to CO 22

Branching Constraint Selection

• Unary Branching Constraints
– Choose the variable which has a fractional part

closest to ½.
– Try to estimate how much enforcing the integrality of

a variable will cost at least – degradation method.
– Follow user-defined priorities.
– Choose a random variable and combine with

restarts.
• Empirically, we prefer balanced search trees over

degenerated branches.

CS 149 - Intro to CO 23

Branching Constraint Selection

• In some cases, unary branching constraints cannot
achieve balance:
– Σ xi = 1 , xi = 1 has big, xi = 0 almost no effect!

• Special Ordered Sets
– SOS-Branching Idea: Σi∈I xi = 1 or Σi∉I xi = 1.
– SOS type 1

• An ordered set of variables, where at most one variable may take
on a nonzero value.

– SOS type 2
• An ordered set of variables, where at most two variables may

take on nonzero values, and if two variables are nonzero, they
must be adjacent in the set.

– SOS type 3
• A set of 0-1 variables only one of which may be selected to have

the value 1, the other variables in the set having the value 0.

Thank you!Thank you!

