
Chapter 2
Integer Programming

Paragraph 3
Advanced Methods

CS 149 - Intro to CO 2

Search and Inference

• Different search strategies and branching
constraint selections can tailor the search part of
our quest to find and prove an optimal solution.

• Considering a relaxation, we have made a first
attempt to reduce the search burden by inferring
information about a problem.

• Pushing more optimization burden into polynomial
inference procedures can dramatically speed up
optimization.

CS 149 - Intro to CO 3

Reduced Cost Filtering

• Assume a certain non-basic variable x is 0 in the
current relaxed LP solution, and the reduced costs
of x are given by cx.

• When enforcing a lower bound on x, x ≥ k, then
the dual simplex algorithm shows that the optimal
relaxation value will increase (we assume
minimization) by at least k cx.

• If that increase is greater than the current gap
between upper and lower bound, x must be lower
or equal k-1 in any improving solution.

CS 149 - Intro to CO 4

Cutting Planes

• Recall that Simplex returns the optimal solution to
an IP when all corners are integer.

• Consequently, if we could find linear inequalities
that give us the convex hull of the integer feasible
region, we would be in good shape.

• The idea of cutting planes tries to infer so-called
valid inequalities that preserve all integer feasible
solutions, but cut off some purely fractional region
of the LP polytope.

CS 149 - Intro to CO 5

Cutting Planes

• Assume we find a fractional solution to our LP
relaxation.

• A cutting plane can be derived that renders the
current relaxed solution infeasible and that
preserves all integer feasible solutions.

CS 149 - Intro to CO 6

Gomory Cuts

• Gomory cuts are one of the most famous examples of
cutting planes.

• Given a constraint xB(i) + aN
TxN = bi where bi is fractional

(the basic solution x0 sets x0
B(i) = bi).

• Denote with fj = aj - ⎣ai⎦ the fractional part of a, and denote
with gi = bi - ⎣bi⎦ the fractional part of bi.

• Then, xB(i) + ⎣aN⎦ TxN ≤ bi. Since the left hand side is
integer, we even have xB(i) + ⎣aN⎦ TxN ≤ ⎣bi⎦. Subtracting this
inequality from xB(i) + aN

TxN = bi yields: fNTxN ≥ gi.
• It can be shown that these cuts alone are sufficient to

solve an IP without branching in finitely many steps!

CS 149 - Intro to CO 7

Knapsack Cuts

• For binary IPs, some of the most effective cuts are based
on considerations about the Knapsack problem.

• Assume we have that one constraint of our problem is
wTx ≤ C (x œ {0,1}n).

• Assume also that we found some set I Œ {1,..,n} such that
Σi œ I wi > C. Then, we can infer that it must hold:
Σi œ I xi ≤ |I| -1.

• Using sets I with smaller cardinalities gives stronger cuts.
We can further improve a cut by considering J = { j | j ∉ I,
wj ≥ maxiœI wi} and enforcing: Σi œ I∪J xi ≤ |I| -1.

• These cuts are also referred to as cover cuts.

CS 149 - Intro to CO 8

Clique Cuts

• Again, for binary IPs we can consider what is
called a conflict graph.

• Generally, cliques in the conflict graph give us
so-called clique cuts that can be very powerful.

X1 -X1

X2 -X2

X3 -X3

X1 + X3 ≤ 1

X1 – X2 ≤ 0

-X2 + X3 ≤ 0

X1 – X2 + X3 ≤ 0

CS 149 - Intro to CO 9

Disjunctive Cuts

CS 149 - Intro to CO 10

Disjunctive Cuts

CS 149 - Intro to CO 11

One side of the
disjunction0=ix

Disjunctive Cuts

CS 149 - Intro to CO 12

1=ixThe other side of
the disjunction

Disjunctive Cuts

CS 149 - Intro to CO 13

Disjunctive Cuts

CS 149 - Intro to CO 14

The convex-hull of the
union of the disjunctive sets

Disjunctive Cuts

CS 149 - Intro to CO 15

One facet of the convex-hull
but it is also a cut!

Disjunctive Cuts

CS 149 - Intro to CO 16

The new “feasible” solution!

Disjunctive Cuts

CS 149 - Intro to CO 17

Disjunctive Cuts

• In practice, we can generate disjunctive cuts by
solving some linear program.

• Consequently, LPs cannot only be used to
compute a bound on the objective, they can even
be used to improve this bound by adding feasible
cuts!

CS 149 - Intro to CO 18

Dynamic Programming

• Assume we wanted to compute Fibonacci
numbers: Fn+1 = Fn + Fn-1, F0=1, F1=1.

• What is stupid about using a recursive algorithm?
• Now assume we want to solve the Knapsack

problem, and the maximum item weight is 6. How
should we solve this problem?

• Now assume the maximum item profit is 4. How
should we solve the problem now?

CS 149 - Intro to CO 19

Dynamic Programming

140

1 2 430
items

profits

3 3 4 5 0 arc−weights

10
20

0

30
40
50
60
70
80
90

100
110
120
130

W(i,P) = min{W(i-1,P), W(i-1,P-pi)+wi}

CS 149 - Intro to CO 20

Approximation

• We can adapt a dynamic program to find a near-
optimal solution in polynomial time.

• The core idea consists in scaling the profits.

• How should we choose K?
– What is the runtime of the scaled program?
– What is the error that we make?

i
i

pp
K

⎢ ⎥= ⎢ ⎥⎣ ⎦

CS 149 - Intro to CO 21

Approximation

• A very simple 2-approximation can be derived
from the linear programming solution.

• Wlog, we may assume that all items have weight
lower or equal C.

• Out of the following two, take the solution that
achieves maximum profit:
– LP solution without the fractional item.
– Take only the item with maximum profit.

• Can we use this 2-approximation to speed up our
approximation scheme?

Thank you!Thank you!

