Chapter 2
Integer Programming

Paragraph 3
Advanced Methods

Search and Inference

 Different search strategies and branching
constraint selections can tailor the search part of
our quest to find and prove an optimal solution.

« Considering a relaxation, we have made a first
attempt to reduce the search burden by inferring
information about a problem.

* Pushing more optimization burden into polynomial
inference procedures can dramatically speed up
optimization.

CS 149 - Intro to CO 2

Reduced Cost Filtering

« Assume a certain non-basic variable x is 0 in the
current relaxed LP solution, and the reduced costs
of x are given by c,.

* When enforcing a lower bound on x, x 2 k, then
the dual simplex algorithm shows that the optimal
relaxation value will increase (we assume
minimization) by at least k c,.

 |If that increase is greater than the current gap
between upper and lower bound, x must be lower
or equal k-1 in any improving solution.

CS 149 - Intro to CO 3

Cutting Planes

* Recall that Simplex returns the optimal solution to
an I[P when all corners are integer.

« Consequently, if we could find linear inequalities
that give us the convex hull of the integer feasible
region, we would be in good shape.

* The idea of cutting planes tries to infer so-called
valid inequalities that preserve all integer feasible
solutions, but cut off some purely fractional region
of the LP polytope.

CS 149 - Intro to CO 4

Cutting Planes

« Assume we find a fractional solution to our LP
relaxation.

A cutting plane can be derived that renders the
current relaxed solution infeasible and that
preserves all integer feasible solutions.

CS 149 - Intro to CO

Gomory Cuts

Gomory cuts are one of the most famous examples of
cutting planes.

Given a constraint Xz, + ay'xy = b; where b, is fractional
(the basic solution x° sets X%, = b)).

Denote with f; = a, - La,]the fractional part of a, and denote
with g, = b, - Lb. | the fractional part of b..

Then, xg + Lay] Txy < b.. Since the left hand side is
integer, we even have xg; + Lay ™y <Lb,l. Subtracting this
inequality from xg,y + ay™xy = b, yields: fy"xy 2 g;.

It can be shown that these cuts alone are sufficient to
solve an IP without branching in finitely many steps!

CS 149 - Intro to CO 6

Knapsack Cuts

For binary IPs, some of the most effective cuts are based
on considerations about the Knapsack problem.

Assume we have that one constraint of our problem is
wix < C (x € {0,1}").

Assume also that we found some set | € {1,..,n} such that
2. . w; > C. Then, we can infer that it must hold:

Using sets | with smaller cardinalities gives stronger cuts.
We can further improve a cut by considering J={j|j ¢ |,

w; 2 max;, w;} and enforcing: 2; _, , x; < |[I] -1.

These cuts are also referred to as cover cuts.

CS 149 - Intro to CO

Clique Cuts

* Again, for binary IPs we can consider what is
called a conflict graph.

Xi+X; £1

« Generally, cligues in the conflict graph give us
so-called clique cuts that can be very powerful.

CS 149 - Intro to CO

Disjunctive Cuts

CS 149 - Intro to CO

Disjunctive Cuts

CS 149 - Intro to CO

10

DisjunctW\

One side of the
digunction

g

/ CS 149 - Intro to CO 11

Disjunctive Cuts /

The other side of
the digunction

CS 149 - Intro to CO 12

Disjunctive Cuts

N

AN

CS 149 - Intro to CO

13

Disjunctive Cuts

The convex-hull of the
union of the digunctive sets

CS 149 - Intro to CO

14

Disjunctive Cuts

One facet of the convex-hull
but it Isaso acut!

CS 149 - Intro to CO

15

Disjunctive Cuts

The new “feasible” solution!

CS 149 - Intro to CO

16

Disjunctive Cuts

* |n practice, we can generate disjunctive cuts by
solving some linear program.

« Consequently, LPs cannot only be used to
compute a bound on the objective, they can even
be used to improve this bound by adding feasible

cuts!

CS 149 - Intro to CO 17

Dynamic Programming

Assume we wanted to compute Fibonacci
numbers: F ., =F, +F_,, Fy=1, F,=1.

What is stupid about using a recursive algorithm?

Now assume we want to solve the Knapsack
problem, and the maximum item weight is 6. How
should we solve this problem?

Now assume the maximum item profit is 4. How
should we solve the problem now?

CS 149 - Intro to CO 18

Dynamic Programming

W(i,P) = min{W(i-1,P), W(i-1,P-p;)+w.}

items

profits 0 1 2 3 4
0 Q Or Q- O O
10 \ \\ TN
20 \\ ~No
30 N\ “O—0
40 N\ X O O
50 — - O—><—0
60 N\ N\ O
70 \\ \O\—AO
80 AN “O—=><—0
90 X OO0
100 N0
110 o
120 O—0
130 NN
140 o

3 3 4 5 0 arc—weigh£

CS 149 - Intro to CO

Approximation

* We can adapt a dynamic program to find a near-
optimal solution in polynomial time.

* The core idea consists in scaling the profits.

[

« How should we choose K?

— What is the runtime of the scaled program?
— What is the error that we make?

CS 149 - Intro to CO 20

Approximation

A very simple 2-approximation can be derived
from the linear programming solution.

Wilog, we may assume that all items have weight
lower or equal C.

Out of the following two, take the solution that
achieves maximum profit:

— LP solution without the fractional item.
— Take only the item with maximum profit.

Can we use this 2-approximation to speed up our
approximation scheme?

CS 149 - Intro to CO 21

Thank you!

