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Search and Inference

• Different search strategies and branching 
constraint selections can tailor the search part of 
our quest to find and prove an optimal solution.

• Considering a relaxation, we have made a first 
attempt to reduce the search burden by inferring 
information about a problem.

• Pushing more optimization burden into polynomial 
inference procedures can dramatically speed up 
optimization.
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Reduced Cost Filtering

• Assume a certain non-basic variable x is 0 in the 
current relaxed LP solution, and the reduced costs 
of x are given by cx.

• When enforcing a lower bound on x, x ≥ k, then 
the dual simplex algorithm shows that the optimal 
relaxation value will increase (we assume 
minimization) by at least k cx.

• If that increase is greater than the current gap 
between upper and lower bound, x must be lower 
or equal k-1 in any improving solution.
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Cutting Planes

• Recall that Simplex returns the optimal solution to 
an IP when all corners are integer.

• Consequently, if we could find linear inequalities 
that give us the convex hull of the integer feasible 
region, we would be in good shape.

• The idea of cutting planes tries to infer so-called 
valid inequalities that preserve all integer feasible 
solutions, but cut off some purely fractional region 
of the LP polytope.
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Cutting Planes

• Assume we find a fractional solution to our LP 
relaxation.

• A cutting plane can be derived that renders the 
current relaxed solution infeasible and that 
preserves all integer feasible solutions.
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Gomory Cuts

• Gomory cuts are one of the most famous examples of 
cutting planes.

• Given a constraint xB(i) + aN
TxN = bi where bi is fractional 

(the basic solution x0 sets x0
B(i) = bi).

• Denote with fj = aj - ⎣ai⎦ the fractional part of a, and denote 
with gi = bi - ⎣bi⎦ the fractional part of bi.

• Then, xB(i) + ⎣aN⎦ TxN ≤ bi. Since the left hand side is 
integer, we even have xB(i) + ⎣aN⎦ TxN ≤ ⎣bi⎦. Subtracting this 
inequality from xB(i) + aN

TxN = bi yields:   fNTxN ≥ gi.
• It can be shown that these cuts alone are sufficient to 

solve an IP without branching in finitely many steps!
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Knapsack Cuts

• For binary IPs, some of the most effective cuts are based 
on considerations about the Knapsack problem.

• Assume we have that one constraint of our problem is          
wTx ≤ C (x œ {0,1}n). 

• Assume also that we found some set I Œ {1,..,n} such that 
Σi œ I wi > C. Then, we can infer that it must hold:                     
Σi œ I xi ≤ |I| -1.

• Using sets I with smaller cardinalities gives stronger cuts. 
We can further improve a cut by considering J = { j | j ∉ I, 
wj ≥ maxiœI wi} and enforcing:   Σi œ I∪J xi ≤ |I| -1.

• These cuts are also referred to as cover cuts.
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Clique Cuts

• Again, for binary IPs we can consider what is 
called a conflict graph.

• Generally, cliques in the conflict graph give us   
so-called clique cuts that can be very powerful.

X1 -X1

X2 -X2

X3 -X3

X1 + X3 ≤ 1

X1 – X2 ≤ 0

-X2 + X3 ≤ 0 

X1 – X2 + X3 ≤ 0
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Disjunctive Cuts
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Disjunctive Cuts
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One side of the
disjunction0=ix

Disjunctive Cuts
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1=ixThe other side of
the disjunction

Disjunctive Cuts
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Disjunctive Cuts
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The convex-hull of the
union of the disjunctive sets

Disjunctive Cuts
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One facet of the convex-hull
but it is also a cut!

Disjunctive Cuts
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The new “feasible” solution!

Disjunctive Cuts
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Disjunctive Cuts

• In practice, we can generate disjunctive cuts by 
solving some linear program.

• Consequently, LPs cannot only be used to 
compute a bound on the objective, they can even 
be used to improve this bound by adding feasible 
cuts!
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Dynamic Programming

• Assume we wanted to compute Fibonacci 
numbers: Fn+1 = Fn + Fn-1, F0=1, F1=1.

• What is stupid about using a recursive algorithm?
• Now assume we want to solve the Knapsack 

problem, and the maximum item weight is 6. How 
should we solve this problem?

• Now assume the maximum item profit is 4. How 
should we solve the problem now?
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Dynamic Programming
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W(i,P) = min{W(i-1,P), W(i-1,P-pi)+wi}



CS 149 - Intro to CO 20

Approximation

• We can adapt a dynamic program to find a near-
optimal solution in polynomial time. 

• The core idea consists in scaling the profits.

• How should we choose K?
– What is the runtime of the scaled program?
– What is the error that we make?
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Approximation

• A very simple 2-approximation can be derived 
from the linear programming solution.

• Wlog, we may assume that all items have weight 
lower or equal C.

• Out of the following two, take the solution that 
achieves maximum profit:
– LP solution without the fractional item.
– Take only the item with maximum profit.

• Can we use this 2-approximation to speed up our 
approximation scheme?



Thank you!Thank you!


