PRIMAL DUAL ALGORITHM

CS 149 Staff

November 4, 2008

Example:

Primal
$$\min 2x_1+2x_2+3x_3$$

$$s.t \quad x_1+x_3 \geq 1$$

$$x_2+x_3 \geq 2$$

$$x_{1,2,3} \geq 0$$

After introducing slack and artificial variables for greater than constraints, we have:

$$x_1 + x_3 - s_1 + a_1 = 1$$

 $x_2 + x_3 - s_2 + a_2 = 2$

$$a_1, a_2, s_1, s_2 \ge 0$$

Initial tableau is:

a_1	\mathbf{a}_2	\mathbf{s}_1	S ₂	\mathbf{x}_1	X ₂	X ₃	RHS
0	0	0	0	2	2	3	0
1	0	-1	0	1	0	1	1
0	1	0	-1	0	1	1	2

And we have:

$$c^{T}$$
 = [0 0 2 2 3] "coefficients of s's and x's in row(0)"
$$\pi^{T}$$
 = (0,0) "bfs for dual of P"
$$\pi^{T} \cdot A = [0 0 0 0 0]$$

Now, we need to decide which of the columns are admissible.

$$J(\pi) = \{ j \mid (c^{T} - \pi^{T}A) \cdot j = 0 \}$$

Let's compare c^T : [0 0 2 2 3] and π^T : A: [0 0 0 0 0]. We see that s1 and s2 are equal on both sides, hence admissible.

$$J(\pi) = \{s_1, s_2\}$$

Restricted primal can now be formulated using the admissible columns:

Restricted Primal
$$\min a_1 + a_2$$

$$s.t \quad a_1 - s_1 = 1$$

$$a_1 - s_2 = 2$$

$$a_1, a_2, s_1, s_2 \ge 0$$

Initial tableau is:

a_1	a ₂	S ₁	s ₂	RHS
1	1	0	0	0
1	0	-1	0	1
0	1	0	-1	2

Notice that, the tableau is not in proper form. We need to eliminate 1's from row(0) to obtain the identity.

a_1	a ₂	S ₁	S ₂	RHS
0	0	1	1	-3
1	0	-1	0	1
0	1	0	-1	2

Now, the tableau is in proper form and also in the final state. But RHS is -3, so artificials are not zero.

$$\pi^{r} = [1 \ 1] - [0 \ 0] = [1 \ 1]$$

Update
$$\pi$$
: $\pi^{\text{new}} = \pi + \lambda \pi^{\text{r}}$

In order to find λ , we will only consider j's that are $\not\ni J(\pi)$ and $A_i \cdot \pi^r > 0$

$$J \not\ni J(\pi)$$
 is $\{x_1, x_2, x_3\}$ and

$$A_{x1} \pi^r \rightarrow [1 \ 0] \cdot [1 \ 1] > 0$$

$$A_{x2} \pi^r \rightarrow [0 \ 1] \cdot [1 \ 1] > 0$$

$$A_{x3} \pi^r \rightarrow [1 \ 1] \cdot [1 \ 1] > 0$$

We only consider for j: x_1 , x_2 , x_3

$$\lambda \text{ is } \min\left\{\frac{cj-\pi\cdot Aj}{Aj\cdot\pi^{\text{r}}}\right\} = \min\left\{\frac{2-0}{1}, \frac{2-0}{1}, \frac{3-0}{2}\right\} \quad \Rightarrow \quad \lambda = 3/2$$

Update
$$\pi$$
: $\pi^{\text{new}} = \pi + \lambda \pi^{\text{r}}$ $\pi^{\text{new}} = (0, 0) + 3/2 \cdot (1, 1) = (3/2, 3/2)$

Now, we need to decide which of the columns are admissible.

$$J(\pi) = \{ j \mid (c^{T} - \pi^{T}A) \cdot j = 0 \}$$

So we compare c^T [0 0 2 2 3] and $\pi^T \cdot A = (3/2, 3/2) \cdot A = [-3/2, -3/2, 3/2, 3/2, 3]$. We see that x3 equals on both sides, hence admissible.

$$J(\pi) = \{x_3\}$$

We write the restricted primal using the admissible columns:

Restricted Primal
$$\min a_1 + a_2$$

$$s.t \quad a_1 +_3 = 1$$

$$a_2 + x_3 = 2$$

$$a_1, a_2, x_3 \ge 0$$

Initial tableau is:

a_1	a ₂	X ₃	RHS
1	1	0	0
1	0	1	1
0	1	1	2

Notice that, the tableau is not in proper form. We need to eliminate 1's from row(0) to obtain the identity.

a_1	a ₂	X ₃	RHS
0	0	-2	-3
1	0	1	1
0	1	1	2

We do one simplex iteration:

a_1	a ₂	X ₃	RHS
2	0	0	-1
1	0	1	1
-1	1	0	1

Now, the tableau is in the final state. But RHS is -1, so artificials are not zero.

$$\pi^r = [1 \ 1] - [2 \ 0] = [-1 \ 1]$$

Update
$$\pi$$
: $\pi^{\text{new}} = \pi + \lambda \pi^{\text{r}}$

In order to find λ , we will only consider j's that are $\not\ni J(\pi)$ and $A_i \cdot \pi^r > 0$

$$\begin{array}{l} J \not\ni J(\pi) \text{ is } \{s_1,\,s_2,\,x_1,\,x_2\} \text{ and} \\ \\ A_{x1}\,\pi^r \: \to [1\ 0] \cdot [\text{-}1\ 1] < 0 \qquad \text{``we do not consider''} \\ \\ A_{x2}\,\pi^r \: \to [0\ 1] \cdot [\text{-}1\ 1] > 0 \\ \\ A_{s1}\,\pi^r \: \to [\text{-}1\ 0] \cdot [\text{-}1\ 1] > 0 \\ \\ A_{s2}\,\pi^r \: \to [0\ \text{-}1] \cdot [\text{-}1\ 1] < 0 \qquad \text{``we do not consider''} \end{array}$$

We only consider for j: s_1 , x_2

$$\lambda \text{ is } \min \Big\{ \frac{cj - \pi \cdot Aj}{Aj \cdot \pi r} \Big\} = \min \Big\{ \frac{0 - (-\frac{3}{2})}{1}, \frac{2 - \frac{3}{2}}{1} \Big\} \implies \lambda = 1/2$$
 Update π :
$$\pi^{\text{new}} = \pi + \lambda \pi^{r}$$

$$\pi^{\text{new}} = (3/2, 3/2) + 1/2 \cdot (-1, 1) = (1, 2)$$

Now, we need to decide which of the columns are admissible.

$$J(\pi) = \{ j \mid (c^{T} - \pi^{T}A) \cdot j = 0 \}$$

So we compare c^T [0 0 2 2 3] and $\pi^T \cdot A = (1/2, 1/2) \cdot A = [-1, -2, 1, 2, 3]$. We see that x2 and x3 are equal on both sides, hence admissible.

$$J(\pi) = \{ x_2, x_3 \}$$

We write the restricted primal using the admissible columns:

Restricted Primal min a1 + a2
s.t a1 + x3 = 1
a2 + x2 + x3 = 2
a1, a2, x2, x3
$$\geq$$
 0

Initial tableau is:

a_1	\mathbf{a}_2	X ₂	\mathbf{X}_3	RHS
1	1	0	0	0
1	0	0	1	1
0	1	1	1	2

Notice that, the tableau is not in proper form. We need to eliminate 1's from row(0) to obtain the identity.

a ₁	a ₂	X ₂	X ₃	RHS
0	0	-1	-2	-3
1	0	0	1	1
0	1	1	1	2

We do one simplex iteration:

a ₁	a ₂	x ₂	X ₃	RHS
1	1	0	0	0
1	0	0	1	1
-1	1	1	0	1

Now, the tableau is in the final state. And RHS is 0, so RP is feasible. Hence we are done! Dual solution is $\pi^T = [1, 2]$.

Primal solution is $x_2 = 1$, $x_3 = 1$ (from the last tableau) and $x_1 = 0 \rightarrow x^{T=}[0, 1, 1]$.