
Notes on Simplex Algorithm

CS 149 Staff

October 18, 2007

Until now, we have represented the problems geometrically, and solved by finding
a corner and moving around. Now we learn an algorithm to solve this without
drawing a graph, and feasible regions.
Once we have a standard form of LP, we can construct a simplex tableau, which
looks like following.

cT 0
A b

as in lecture slide 5 on Simplex.

In this phase, we assume the initial tableau represents feasible solution.
(We will later deal with the case that it doesn’t)
So, in the lecture slide 8 on Simplex, we see a tableau, which corresponds to a bfs,
x = 0, y = 0. This is a Simplex tableau representation of the following problem:

Min− x− 2y
− x + y ≤ 2
x− y ≤ 3
x + y ≤ 5
x ≤ 4
y ≤ 3
x, y ≥ 0

We can see that the five variables added in front are slack variables to make it
standard form. In this case our bfs and the vectors are:

x0 =



2
3
5
4
3
0
0


y1 =



1
−1
−1
−1
0
1
0


y2 =



−1
1
−1
0
−1
0
1


With the instructions given in the slide 7, we choose a column with negative cT ,
which can either be 6th or 7th. In this case we ’arbitrarily’ choose 6th column. And

1



the next procedure is to find λ = min(3
1 , 5

1 , 4
1) = 3. Since it was the second row

that gave us minimum, we choose second row. Therefore 6th column goes into the
basis, and second column goes out. We now follow the direction of y1 for length 3.
The result after change of basis comes in next slide, slide 9. Now we have another
tableau, which corresponds to a bfs, x = 3, y = 0.
Now in this tableau, we have bfs and vectors as following:

x0 =



5
0
2
1
3
3
0


y1 =



−1
1
1
1
1
−1
0


y2 =



0
0
−2
−1
−1
1
1


Now if we take a look at the top row, cT , we see five 0’s, and two non-zero’s.
One is 1, and the other is -3, and we can see those values are actually cT y1 and
cT y2, respectively (here c is the original objective function). That suggests us that
following y1 will increase our objective value, which we don’t want.
Now similarly, we choose a column with negative cT , which is 7th column. That
means we put 7th column, which is y, into basis. We choose λ = min(2

2 , 1
1 , 3

1) = 1.
Now we have two rows that have minimum ratio. We choose, again ’arbitrarily’, the
4th row, and we will have a new basis of {s1, s3, s5, x, y} (slide 10).
Now we have x0, y1, y2 as following:

x0 =



5
0
0
0
2
4
1


y1 =



−1
1
−1
0
1
0
1


y2 =



0
0
2
1
1
−1
−1


Again, we choose a column with negative cT , which is 2nd column. However, when
we draw the original feasible region, and the corner we’re in, we can see that y1

points up, and there is no way to go up from the corner x = 4, y = 1. If we calculate
λ = min(5

1 , 0
1 , 2

1) = 0, we can see that we’re moving 0 on that direction. That is,
we are not moving but we are changing our basis. Now s2 goes in the basis and s3

goes out.
We do this procedure one more time(slide 11) and we will get a tableau that we
have optimal solution(slide 12). As we can see in the top row, there is no negative
values, and that means we are in optimal point. And the top-right corner, 8, is the
negative of our objective value on this bfs. we can see that x = 2, y = 3 will give
−x− 2y = −8. From this bfs, in which direction we move, either y1 or y2, we can’t

2



decrease our objective value.

x0 =



1
4
0
2
0
2
3


y1 =



−1
1
1
1
0
−1
0


y2 =



2
−2
0
−1
1
1
−1


We can see that cT y1 = (−1) ∗ (−1)+0 ∗ (−2) = 1 ≥ 0 and cT y2 = 1 ∗ (−1)+ (−1) ∗
(−2) = 1 ≥ 0, and that means the point (2,3) is the best one in the cone start-
ing from that point with vectors y1 and y2, in which whole feasible region dwells.
Therefore the point is global minimum.

Now we have a question. Does this algorithm always terminate?

• In case of no degeneracy the objective function will increase strictly monoton-
ically. Therefore, since there are finite number of corners, and we never visit
the same corner twice, this algorithm will terminate.

• In case of degeneracy (e.g., LP with Ax = 0), the algorithm may cycle forever.

To avoid cycles, we use Bland’s Anticycling Algorithm. When selecting a
pivot:

• choose the lowest numbered (i.e., leftmost) column t with a negative cost ←
entering column

• among rows k with the ratio mink|āt
k>0

b̄k

āt
k

choose the one with the lowest
numbered B(k) ← leaving column

First, if we have two or more columns that have negative cT , we choose the
leftmost column to enter the basis. Second, if we have two or more rows that have
minimal λ, we choose the row where the corresponding column that will be leaving
the basis is leftmost.

We are now going to show that Bland’s algorithm works.
Suppose we use Bland’s algorithm and enter a cycle. Remove from the tableau

the rows and columns that do not contain pivots during the cycle. Let T1 be the
tableau before the last column n enters the basis.

T1 :

n
≥ 0 < 0

0
...
0

3



We denote entries in T1 with c̄, ā. They satisfy the following:

∀i < n, c̄i ≥ 0 (1)
c̄n < 0 (2)

Equations 1 and 2 follow from the fact that the lowest numbered column with a
negative cost is the last column.

T2 is the tableau before column n leaves the basis and column p enters the basis.

T2 :

p n
< 0 = 0
≤ 0 0
...

...
> 0 1 0← row r
≤ 0 0

We denote entries in T2 with ĉ, â. They satisfy the following:

ĉp < 0, ĉn = 0, âr,p > 0 (3)
∀i 6= r, âi,p ≤ 0 (4)

The reason why ∀i 6= r, âi,p ≤ 0 is because if âi,p > 0, its corresponding basic
column will be less than n, and by Bland’s algorithm, we wouldn’t introduce column
n into basis. From T2 we define a solution y by

yj =

 −âi,p if B̂(i) = j
1 if j = p
0 otherwise

You can check that y is indeed a solution to Ay = b. Note however that it’s
neither basic, nor feasible.

We now focus on c̄T y.
(a) It can be shown that c̄T y = ĉp < 0 (by (3))
(b)

c̄T y =
n∑

i=1

c̄T
i yi

=
m∑

i=1

−âi,pc̄B̂(i) + c̄p

=
m∑

i=1i6=r

−âi,pc̄B̂(i) − âr,pc̄B̂(r) + c̄p

> 0

4



∵

âi,p ≤ 0 by (4)
c̄B̂(i) ≥ 0 by (1)
âr,p > 0 by (3)
c̄B̂(r) = c̄n < 0 by (2)
c̄p > 0 by (1)


By (a) and (b), we have a contradiction, and n cannot go back into the basis.

Therefore, using Bland’s anticycling algorithm, we will not have cycles.

5


