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1 Extreme Points and Convexity Example

Claim 1. ǫ({5}) = {5}

Proof sketch: since there are no other points in the set, one certainly cannot
express 5 as a convex combination of two other points, so 5 is extreme. We have
shown that every point in the set is extreme, so there is no need to prove that no
other points are extreme.

Claim 2. A half space has no extreme points as long as the dimension is at least

two. Formally, for any vector a 6= 0 and scalar α, ǫ({x| aT x ≥ α }) = {}.

Proof. we construct a nonzero y such that aT y = 0, which will show that for any
x in the set aT (x + −y) = aT x ≥ α and therefore x is not extreme. First consider
the case where a has some zero component ai. In that case the unit vector with
that component one and all others zero satisfies aT y = 0. If a has all non-zero
components, let y = (a2,−a1, 0 · · · ), which clearly satisfies aT y = 0.

Claim 3. A half space of dimension one has a single extreme point. Formally, for

any a, α ∈ R, we have ǫ({x| ax ≥ α }) = {α
a
}.

Proof. In one dimension a vector has simply one component. I will prove this
theorem for the case a > 0; the case a < 0 is symmetric. The inequality defining
the set can be rewritten in this case as x ≥ α/a. For any x0 > α/a, one can express
x0 as the convex combination of α/a and 2x0 − α/a with weight 1/2. The former
is clearly in the set and the latter follows from 2x0 ≥ 2α/a. Therefore every point
satisfying x0 > α/a is not extreme. If x0 = α/a, it suffices to show that for any
nonzero y either x0 +y or x0−y is not in the set. Suppose x0 +y is in the set. That
implies y > 0, but that in turn implies that x0 − y = α/a − y < α/a, and therefore
x0 − y is not in the set. Therefore α/a is extreme.

In topology of real vector spaces, a point x is called an interior point of a set S
if and only if ∃δ > 0 : ∀y ∈ S : |y − x| < δ → y ∈ S. That is, there exists a small
ball around S that is contained within the set. A set is open if and only if all its
points are interior points.

Claim 4. every interior point x of a set S ⊂ R
n is not an extreme point.
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Proof. let a set S and an interior point x be given. We want to show that x is not
extreme. Since x is an interior point, we can choose a δ > 0 : ∀y ∈ S : |y−x| < δ →
y ∈ S. Let u be an arbitrary vector of length 1. The points x + uδ/2 and x − uδ/2
show that x is a convex combination of points in the set.

Corollary: every open subset of R
n has no extreme points.

2 Polyeders and Corners

A polyeder/polyhedron is a finite intersection of half spaces. A bounded polyeder
is called a polytope.

It is useful to have many different equivalent characterizations of the same con-
cept, since different versions are easier to use in different contexts. We therefore will
define what will turn out to be a synonym for extreme point (at least on polyed-
ers): a corner. Intuitively the corners of an object are the parts that one could
put ink on to make a writing implement. More precisely, a point x0 in a polyeder
P is a corner iff for some nonzero vector a and real constant α, aT x0 = α and
∀y ∈ P − {x0} : aT x0 > α.

3 Proof that corners are extreme

If P is a convex polyeder, the following two facts are true:

• Every corner on P is an extreme point

• If P is bounded than P is a convex hull of its corners

We will now prove the first remark:

1. Let x0 be a corner of P.

2. We know there exists an H = {x | aT x = α} such that P ⊆ H≤ and P ∩ H =
{x0} by the definition of a corner.

3. We need to show ∀y ∈ R
n : x0 + y, x0 − y ∈ P implies that y = 0.

4. Let y ∈ R
n such that x0 + y, x0 − y ∈ P be given.

5. Because P ⊆ H≥, we have x0 +y, x0−y ∈ H≥, which is equivalent to aT (x0±
y) ≥ α = aT x0. So, aT y ≥ 0 and aT y ≤ 0, so aT y = 0.

6. So, aT (x0 + y) = aT x0 + aT y = aT x0 = α, therefore x0 + y ∈ P ∩ H = {x0}
and y = 0.

7. By definition, it follows that x0 is an extreme point.
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4 Basic Feasible Solutions

Our definitions of extreme points nor corners are so far of limited utility because we
do not have a systematic way to look for them. Computers cannot reason efficiently
using pictures, so it would be helpful to have a definition of a corner that is based
on linear algebra rather than geometry. The concept of a basic feasible solution is
the answer.

If you do Gauss Jordan elimination on a matrix and then set all variables that
aren’t part of the identity sub matrix equal to zero, you can read out values for
the remaining variables. This is called a basic solution. If all the variables are
nonnegative, it is a basic feasible solution. Basic feasible solutions correspond to
corners. To get a different basic feasible solution, simply choose a different set of
columns for the identity matrix.

Formally, fix a matrix A ∈ R
mxn with rank m ≤ n and a vector b ∈ R

m. A
function B from 1..m to 1..n indicates which columns to find the identity matrix in.
In particular B(i) = j means that the jth column is intended to be all zeros except
for a one in row i. The function N from 1..m-n to 1..n indicates which columns are
not used in the identity matrix. Each column should be used exactly once, so assume
that the union of the ranges of N and M is 1..n. Let AB denote the sub matrix of A
corresponding to the columns indicated by B, that is AB = (aB(1) · · · aB(m) where
at denotes the tth column of A. In order for row operations to produce the identity
matrix it is necessary and sufficient that AB be invertible.

Given a pair of functions satisfying these conditions one can construct a basic
solution as follows. Set xN = 0 and xB = A−1

B b, where xB and xN are defined
analogously to AB. Let x be the vector with component xi equal to the appropriate
component of xB or xN depending on which the corresponding column belongs to.
Such a vector is a basic solution. If it is nonnegative it is feasible and is therefore
called a basic feasible solution. Note that pre-multiplying by the matrix A−1

B is
equivalent to doing the row operations that transform AB into the identity matrix.

As is proved below, basic feasible solutions are equivalent to corners and extreme
point of polyeders.

For example, consider the optimization problem with constraints:1





1 7 22 0 5 0 1
0 3 −5 0 2 1 2
0 1 0 1 −4 0 3



x =





7
1
2





The easiest basis to work with is the one in which AB is the identity matrix.
This corresponds to B(1) = 1, B(2) = 6, B(3) = 4 and N(1) = 2, N(2) = 3, N(3) =
5, N(4) = 7. Note that the order of the columns in B matters. To ensure AB = I the
column aB(i) should have a 1 in component i and zeros elsewhere. The corresponding
basic feasible solution is xT = (7, 0, 0, 2, 0, 1, 0).

1This example is based on the example given in class but is not identical.
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5 Proof that corners, basic feasible solutions and ex-

treme points are the same

Given x0 ∈ P = {x ∈ R
n|Ax = b, x ≥ 0}, it is equivalent to say:

1. x0 is an extreme point of P.

2. {aj |x0
j > 0} are linearly independent, [A = (a1, ..., am)].

3. x0 is a basic feasible soluition (bfs).

4. x0 is a corner of P.

5.1 Statement 4 → Statement 1

We wish to use the previously proven result that every corner of a convex polyeder
is an extreme point. So, we have to show that P is a convex polyeder:

P = {x ∈ R
n |x ≥ 0, Ax = b} = {x ∈ R

n |





A
−A
I



x ≥





b
−b
0



}

5.2 Statement 1 → Statement 2

Let us say that the first r components of x0 are non-negative, and x0
r+1, . . . , x

0
n = 0.

For r = 0, x0 = 0, which implies {aj |x0
j > 0} = ∅. For r > 0, assume {aj |x0

j > 0}
is linearly dependent. This implies that we can find a linear combination of these
vectors with coefficients α1, . . . , αr.

Without loss of generality, assume ∀i, 1 ≤ i ≤ r, |αi| < |x0
i |, and consider yt =

(α1, . . . , αr, 0, . . . , 0). This implies Ay = 0, and A(x0±y) = b and x0±y ≥ 0 follows
from the statement |αi| < |x0

i | for all i.
So, x0 ± y ∈ P, which implies y = 0 and thus αi = 0, ∀i.

5.3 Statement 2 → Statement 3

Assume we have our linearly independent set {aj |x0
j > 0}. Now, we know there

exists a basis B (with linearly independent columns) such that B(Nm) ⊇ {j |x0
j >

0}.
Then we have A−1

B b = A−1
B Ax0 = A−1

B ABx0
B + A−1

B ANx0
N . We also know

ANx0
N = 0, so A−1

B b = A−1
B ABx0

B = x0
B → x0 is bfs.

5.4 Statement 3 → Statement 4

Let x0 be a bfs. x0 =

[

x0
B

x0
N

]

. Let a =

[

aB

aN

]

with aB = 0, and at
N = (1, . . . , 1). Let

us also introduce H = {x ∈ R
n | atx = 0}.

a) Now we choose any x ∈ P. We have atx = at
BxB + at

NxN = 1n−mxn ≥ 0, so
P ⊆ H≥.
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b) By definition, we have atx0 = at
Bx0

B + aT
Nx0

N = 0, so x0 ∈ H ∩ P.

c) Finally, we need to show P ∩ H ⊆ {x0}. Choose y ∈ P ∩ H. aty = 0, or
0 = at

ByB + at
NyN = 1n−myn, so yn = 0. Furthermore, b = Ay = AByB, so

yB = A−1
B b = x0, so y = x0.
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