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1 Optimal Solutions

We have proved the equivalence of corners, extreme points and basic feasible so-
lutions. However, there is another important part of the geometry of the feasible
region that we must examine, namely directions. Directions, intuitively, are vec-
tors that you can follow infinitely and stay in the feasible region. If our feasible
region in R

2 is the first quadrant, then the set of directions for this region is all
x ≥ 0. Let us define the set of directions, C(P ), formally:
For P 6= ∅:

C(P ) := {y ∈ R
n|∀x ∈ P, λ > 0, x + λy ∈ P}.

Remark 1. For a LP in normal form: C(P ) = {y ∈ R
n|Ay = 0 and y ≥ 0}

Proof. If we have a y ∈ C(P ) := {y ∈ R
n|∀x ∈ P, λ > 0, x + λy ∈ P}, we know that

A(x + λy) = b. We also know, since x ∈ P , that Ax = b. Then;
Ax + Aλy = b ⇒ b + Aλy = b ⇒ λAy = 0 ⇒ Ay = 0.
Now, the other direction of the proof is trivial; given Ax = b and y ∈ C(P ) = {y ∈
R

n|Ay = 0 and y ≥ 0} for any λ > 0 we have Ax + λAy = b ⇒ A(x + λy) = b ⇒
x + λy ∈ P .

Now that we have this, we can state an important theorem:

Theorem 2. Given P = {x|Ax = b ∧ x ≥ 0} we have P = κ(ǫ(P )) + C(P )

The intuition is that P can be spanned by the convex hull of its extreme points
together with the set of its direction vectors.

Corollary 3. For P = {x|Ax = b∧x ≥ 0}, there exists at least one optimal solution
x, and it is an extreme point. (P 6= ∅)

Proof. Suppose x∗ is optimal for cT x in a minimization problem. Let ǫ(P ) =
{a1, a2, . . . ar} and y ∈ C(P ). Then ∃λ1, λ2, . . . λr : x =

∑

λiai+β y where
∑

λi = 1
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and λi ≥ 0. x∗ requires that cT y is strictly positive (otherwise we could increase
β and the objective would be better, hence x∗ would not be optimal). So we can
simply write x∗ =

∑

λiai. Then the optimal value cT x =
∑

λicT ais ⇒ cT ai are the
same ∀i and λi > 0.

This corollary suggests an algorithm: We could enumerate all the BFS’s (ex-
treme points), compute their costs, and take the cheapest one. However, if we have

m variables and n constraints, there are

(

n

m

)

BFS’s which is exponential. Enu-

merating exponential number of BFS’s is not tractable so we need a search algorithm
that is actually guided in some way.

2 Basis Changes

2.1 Vector to another feasible solution

We are going to start with a bfs, x0, and construct a vector, y, to another solution,
x, and then show when this other solution will be another bfs.

Take a bfs x0, spliting it into basic and non-basic parts, x0 =

(

x0
B

x0
N

)

where

x0
B ≥ 0, x0

N = 0, and AB ∗x0
B = b. Now let’s take another feasible x: x ∈ R

n, Ax = b.
Consider the vector from x0 to x: y := x−x0. Ay = A(x−x0) = Ax−Ax0 = b−b = 0
and also 0 = Ay = AByB + ANyN . For the non-basic part of y, yN = xN since
yN = xN − x0

N and x0
N = 0. For the basic part yB = −A−1

B ANxN . So we can write

y =

(

−A−1
B ANxN

xN

)

.

x can be any feasible (not necessarily basic at this point) solution, but we would
like it to be basic. In order to get this, we are going to set xN = ek, where ek is
all zeros except for a 1 in the kth position. We are going to need the corresponding
non-basic column, so we define t = N(k).1

To define our y, we still need to find out what yB is. Remember yN = xN = ek,
we are just selecting the kth column out of AN , which is at.2 Then yB = −A−1

B ANyN

can be written as yB = −A−1
B at =⇒ y =

(

−A−1
B at

ek

)

.

Now we have our y, and we know that x = x0 +λy satisfies Ax = b. All we need
for x to be feasible is to have x ≥ 0. The xN part will always be greater than 0,
since xN = x0

N + λyN = 0 + λek > 0. Then the question is when is xB = xB + λyB

greater than zero? Let us consider this on an element-by-element basis. Trivially,
any element of y that is greater than zero will never give us a problem, since the

1The k’th column in the non-basis.
2The t’th column of the matrix A.
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corresponding xB will be the sum of 2 positive numbers. Zero elements also cause
no problems, so its only the negative elements that interest us.

We want to find a λ such that one element of xB = 0. This element is in
the basis,3 since we are talking about xB, so let’s call it element B(j). We have

0 = xB(j) = x0
B(j) + λyB(j) ⇒ λ = −

x0
B(j)

yB(j)
. We will have x ≥ 0 if λ ≤ −

x0
B(j)

yB(j)
∀j such

that yB(j) < 0 and we have that at least one formerly basic component of x0 that is

not zero in x. Thus, our range of acceptable λ is 0 ≤ λ ≤ min{−
x0

B(j)

yB(j)
|yB(j) < 0}.

2.2 Adjacent BFS

Now we have a feasible x = x0 + λy for some range of λ. Given this, we can state
and prove an important theorem:

Theorem 4. If ∃yB(j) < 0, we choose λ as large as possible (λ < ∞). Then,
x1 = x0 + λy is a basic feasible solution and the corresponding basis is given by:

B∗(i) := B(i) if i 6= r
B∗(r) := t = N(k)

r is chosen such that λ =
x0

B(r)

−yB(r)
= min{

x0
B(i)

−yB(j)
|yB(j) < 0}.

If a new solution x1 is obtained from x0, we say the two corners are adjacent.

Proof. First, let us examine the non-basic4 elements.

Define N∗(i) =

{

N(i) i 6= k

B(r) i = k

}

For all i 6= k, we know that x1
N∗(i) = x0

N(i) + λek N(i) = 0 + λ0.

If i = k, we know that x1
N∗(i) = x0

B(r) + λyB(r) = x0
B(r) +

x0
B(r)

−yB(r)
yB(r) from our

definition of λ. Then, x1
N∗(i) = x0

B(r) − x0
B(r) = 0.

So, all of the non-basic elements are zero. We have our injective functions defining
the basis and the non-basis, and we have x1

N∗ = 0. Therefore we have a bfs.

Now, we provide an example that starts with bfs x0, calculates λ, defines direc-
tion vector y and moves to an adjacent bfs solution x1.

Below is the sample tableau:

1 0 0 1 1 3
0 1 0 −1 1 1
0 0 1 1 −1 1

3Still the basis of x0.
4In x

1’s basis, as defined above.
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This tableau corresponds to the bfs x0 =













3
1
1
0
0













.

We choose the second non-basic column since it has a negative coefficient in the
objective and scan the positive entries. The first 2 are positive, and we choose the
one that minimizes the ratio bi

at
i

(also remember that x0
B = b). Our two candidates

are 3 and 1, so we take 1 = λ and pivot around the highlighted element:

1 0 0 1 1 3
0 1 0 −1 1 1
0 0 1 1 −1 1

We can read out our y vector:y =













−1
−1
1
0
1













Notice that the basic elements of y are the negatives of the corresponding elements
in −yB, and that since we have chosen the second non-basic column, the first non-
basic entry is zero and the second is one.
Lets do the steps out:

1 0 0 1 1 3
0 1 0 −1 1 1
0 1 1 0 0 2

1 −1 0 2 0 2
0 1 0 −1 1 1
0 1 1 0 0 2

We can now read out our new solution:x1 =













2
0
2
0
1













, and verify that:

x1 = x0 + λy =













3
1
1
0
0













+ 1













−1
−1
1
0
1













=













2
0
2
0
1












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