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1 Optimal Solutions

We have proved the equivalence of corners, extreme points and basic feasible so-
lutions. However, there is another important part of the geometry of the feasible
region that we must examine, namely directions. Directions, intuitively, are vec-
tors that you can follow infinitely and stay in the feasible region. If our feasible
region in R? is the first quadrant, then the set of directions for this region is all
x > 0. Let us define the set of directions, C(P), formally:

For P # {):

C(P):={yeR"Vzx e PA>0,z+ \y € P}.

Remark 1. For a LP in normal form: C(P) = {y € R"|Ay =0 and y > 0}

Proof. If we have a y € C(P) := {y € R"|Vx € P,A > 0,z + \y € P}, we know that
A(z + Ay) = b. We also know, since z € P, that Az = b. Then;
Az +Ady=b=b+Ady=b= AAy=0= Ay = 0.
Now, the other direction of the proof is trivial; given Az =b and y € C(P) = {y €
R"Ay = 0 and y > 0} for any A > 0 we have Az + Ny =b = A(z + \y) = b =
x4+ Ay € P.

O

Now that we have this, we can state an important theorem:

Theorem 2. Given P = {z|Ax =bA x> 0} we have P = k(e(P)) + C(P)

The intuition is that P can be spanned by the convex hull of its extreme points
together with the set of its direction vectors.

Corollary 3. For P = {z|Az = bAxz > 0}, there exists at least one optimal solution
x, and it is an extreme point. (P # ()

Proof. Suppose z* is optimal for ¢’z in a minimization problem. Let ¢(P) =

{at,a%,...a"} and y € C(P). Then AL, A2 .. A" 1 2 =Y Na'+ (3 y where Y\ =



and A' > 0. z* requires that ¢’ y is strictly positive (otherwise we could increase
[ and the objective would be better, hence x* would not be optimal). So we can
simply write z* = > Aa’. Then the optimal value ¢’z = > Niclals = c'a’ are the
same Vi and \* > 0. O

This corollary suggests an algorithm: We could enumerate all the BFS’s (ex-
treme points), compute their costs, and take the cheapest one. However, if we have

m variables and n constraints, there are < :1 > BFS’s which is exponential. Enu-

merating exponential number of BFS’s is not tractable so we need a search algorithm
that is actually guided in some way.

2 Basis Changes

2.1 Vector to another feasible solution

We are going to start with a bfs, z°, and construct a vector, v, to another solution,
z, and then show when this other solution will be another bfs.
20
Take a bfs 2, spliting it into basic and non-basic parts, 2° = & | where
TN
x% >0, a:(])\, =0, and AB*xOB = b. Now let’s take another feasible x: x € R"™, Ax = b.

Consider the vector from 20 to z: y := x—2°. Ay = A(z—2°) = Az— A2 =b—-b=0
and also 0 = Ay = Apyp + Anyn. For the non-basic part of y, yy = xn since

YN = TN — x(])\, and :1:9\, = 0. For the basic part yp = —A;AN:EN. So we can write
)= —AG' Anay
TN '

x can be any feasible (not necessarily basic at this point) solution, but we would
like it to be basic. In order to get this, we are going to set xny = e, where e is
all zeros except for a 1 in the kth position. We are going to need the corresponding
non-basic column, so we define t = N(k).!

To define our ¥, we still need to find out what yp is. Remember yy = xny = ¢y,

we are just selecting the kth column out of Ay, which is a’.? Then yp = —A;A NYN
) _Afl t
can be written as yp = —Az'al = y = < eB “ )
k

Now we have our y, and we know that z = z° + \y satisfies Az = b. All we need
for x to be feasible is to have x > 0. The xxn part will always be greater than 0,
since xny = x?v 4+ Ayny = 0+ Aeg > 0. Then the question is when is x5 = zp + Ayp
greater than zero? Let us consider this on an element-by-element basis. Trivially,
any element of y that is greater than zero will never give us a problem, since the

The k’th column in the non-basis.
2The t’th column of the matrix A.



corresponding zp will be the sum of 2 positive numbers. Zero elements also cause
no problems, so its only the negative elements that interest us.

We want to find a A such that one element of g = 0. This element is in
the basis,® since we are talking about z, so let’s call it element B(j). We have

0 B : : TG ;
0=uzp( = T T Ayp@) = A= —;-%. We will have z > 0 if A < —MVJ such

YB()
that yp(;) < 0 and we have that at least one formerly basic component of 20 that is
0
not zero in x. Thus, our range of acceptable X is 0 < \ < min{—zizq lyB(;) < 0}
J

2.2 Adjacent BFS

Now we have a feasible = x° + \y for some range of A. Given this, we can state
and prove an important theorem:

Theorem 4. If Jyp;) < 0, we choose \ as large as possible (A < o0). Then,

! =29 + \y is a basic feasible solution and the corresponding basis is given by:

B*(i) == B(1) ifi#r
B*(r):=t=N(k
'( ) (k) " o
r is chosen such that A\ = Wf:)) = min{ —?!B(Z)) lyB(;) <0}
r J
Lis obtained from z¥, we say the two corners are adjacent.

If a new solution x

Proof. First, let us examine the non-basic? elements.
| N@) i#k
Define N*(i) = { B(r) i=k }
For all 7 # k, we know that m}v*(i) = x?\,(i) + Aex Ny = 0+ AO.

2B r)

—YB(r)

If i = k, we know that x}v*() = w%(T) + Ayp@r) = xOB(r) +

; YB(r) from our
definition of A. Then, ac]lv*(i) = x%(r) — x%(r) =0.
So, all of the non-basic elements are zero. We have our injective functions defining

the basis and the non-basis, and we have x}v* = 0. Therefore we have a bfs. O

Now, we provide an example that starts with bfs 2, calculates ), defines direc-

tion vector y and moves to an adjacent bfs solution z'.

Below is the sample tableau:

1
0
0

S = O

38till the basis of zo.
4In 2%’s basis, as defined above.



This tableau corresponds to the bfs 20 =

O~ = W

0

We choose the second non-basic column since it has a negative coeflicient in the
objective and scan the positive entries. The first 2 are positive, and we choose the

one that minimizes the ratio % (also remember that 24 = b). Our two candidates

are 3 and 1, so we take 1 = A and pivot around the highlighted element:

1 0 1 113
0 0 -1 1|1
0 1 1 -1]1

0
1
0
-1
—1
We can read out our y vector:y = 1
0
1

Notice that the basic elements of y are the negatives of the corresponding elements
in —yp, and that since we have chosen the second non-basic column, the first non-
basic entry is zero and the second is one.

Lets do the steps out:

100 1 1|3
010 -1 1/1
011 0 0|2
1 -1 0 2 0|2
0 1 0 -1 1]1
0 1. 1 0 0]2
2
0
We can now read out our new solution:z! = | 2 |, and verify that:
0
1
3 -1 2
1 -1 0
al=a+xy=| 1 [+1]| 1 =1 2
0 0 0
0 1 1



