
A First Attempt at an LP Algorithm

CS 149 Staff

September 27, 2006

Before we start developing an algorithm to solve Linear Optimization Problems,
we must first define what it is we are trying to solve. We therefore define the Linear
Optimization Problem to be a 2-tuple, (P, z), where P ⊂ R

n is the space of feasible
solutions, and z : P → R is the cost function.

The slides define two different kinds of instances of the Linear Optimization
Problem, Standard Form, and Canonical Form. If A ∈ R

m∗n, b ∈ Rm, c ∈ R
n,

an instance of the linear optimization problem in standard form has:
P := {x ∈ R

n|Ax = b and x ≥ 0} and z(x) := cT x.
An instance of the linear optimization problem in canonical form has:
P := {x ∈ R

n|Ax ≥ b and x ≥ 0} and z(x) := cT x.

We would like to be able to solve both of these kinds of problems, without having
to write 2 different solvers. To do this, we must first define the relation between the
2 forms.

Definition We call 2 optimization instances (P1, z1), (P2, z2) equivalent if
and only if there exist polynomial-time computable functions f : P1 → P2 and
g : P2 → P1 such that:

∀x1 ∈ P1, z2(f(x1)) ≤ z1(x1)∀x2 ∈ P2, z1(g(x2)) ≤ z2(x2)

We will need a lemma to make our definition useful:
Lemma If (P1, z1) and (P2, z2) are equivalent and x1 ∈ P1 is optimal for (P1, z1),
f(x1) ∈ P2 is optimal for (P2, z2) and z1(x1) = z2(f(x2)).
Proof : Let x1 ∈ P1 be optimal for (P1, z1), and let y2 ∈ P2.

z1(x1) ≤ z1(g(y2)) Because x1 is optimal
z2(f(x1)) ≤ z1(x1) ≤ z1(g(y2)) Equivalence
z2(f(x1)) ≤ z1(x1) ≤ z1(g(y2)) ≤ z2(y2) Equivalence
z2(f(x1)) ≤ z2(y2)

So we have that f(x1) has lower cost than any y2 ∈ P2, so it is optimal. Fur-
ther, since the inequality is true for any y2, we can set y2 = f(x1), and get:

1



z2(f(x1)) ≤ z1(x1) ≤ z2(f(x1)), so z1(x1) = z2(f(x2)).
Now that we have a definition of what eqivalence is, and a useful result, we can set
about showing that our two forms are equivalent.

Lemma: The standard and canonical forms of the Linear Optimization Problem
are equivalent.

Proof :
Let (LP )cbe a LO problem in canonical form:
min c′x

Ax ≥ b

x ≥ 0

Let Ã = (A,−I), b̃ = b, c̃ =
(

c

0

)

, x̃ =
(

x

xs

)

. The new problem:
min c̃′x̃

Ãx̃ ≥ b̃

x̃ ≥ 0

This problem is in standard form. Let us now show that the 2 forms are equiv-
alent:
c̃′x̃ = c′x + 0′xs = c′x, so the objective function is the same.
Ãx̃ = b̃ ⇒ Ax − xs = b. Since xs ≥ 0, Ax can take on any value greater than or
equal to b.
Let x̃ be a solution of (LP )s. Then x is a solution of (LP )c.
First, we prove that x is feasible in (LP )c.
x̃ ≥ 0 ⇒ x ≥ 0.

b = Ãx̃ = Ax − xs ⇒ Ax = b + xs ⇒ Ax ≥ b.
Intuitively, we can see that the objective function is the same, and that the feasible
region is the same as well. And since we have proved that the objective function is
the same, we have our functions f and g that takes us from problems in (LP )cto
problems in (LP )s.

Now we will construct the reverse mapping.
We have a problem in (LP )s:
min c′x

Ax = b

x ≥ 0
.
Our corresponding problem in (LP )cis:
min c̃′x̃

Ãx̃ ≥ b̃

x̃ ≥ 0

Ã =
(

A

−A

)

2



b̃ =
(

b

−b

)

c̃ = c.

We are formulating Ax = b as Ax ≥ b and −Ax ≥ −b. It is pretty trivial to see
that this works. Since x and z are the same, f(x) = x and g(x) = x, and we can
see that the 2 forms are equivalent.
This confirms our intuition, that the 2 forms are equivalent, and makes our lives
significantly easier. Since it is more natural to express a problem in canonical form
(think of a situation where we have limited quantites of raw materials that we could
theoretically waste), we will find ourselves converting from canonical form to stan-
dard form a lot (since solvers and the Simplex algorithm take problems in standard
form, hence the name), so xs has a name. The memebers of xs are called slack vari-

ables, and they represent the distance that we could travel towards a constraint
before it becomes “tight” (ie we are on the hyperplane).
Linear Algebra Review

As a review, we will look at how to perform Gaussian Elimination and read out both
a basic solution and the nullspace vectors. Consider the system: Ax = b, where:

A =









−1 0 −3 1 2 2 11
0 −2 −8 0 −4 2 4
−2 0 −6 1 1 2 2
0 −1 −4 0 −2 2 9









, b =









9
12
2
13









.

We first convert this into an augmented matrix:

−1 0 −3 1 2 2 11 9
0 −2 −8 0 −4 2 4 12
−2 0 −6 1 1 2 2 2
0 −1 −4 0 −2 2 9 13

We start Gaussian Elmination by putting a 1 in the first element (first row, first col-
umn), and putting zeros in all other elements in the column. This is called pivoting

around the first element. To do this, we multiply the first row by −1 and subtract
2 times the first row from the third row.

1 0 3 −1 −2 −2 −11 −9
0 −2 −8 0 −4 2 4 12
0 0 0 −1 −3 −2 −20 −16
0 −1 −4 0 −2 2 9 13

We now try to put a 1 in the second element of the second row (along a diago-
nal), with zeros everywhere else in the second column. We do this by multiplying
the second row by −1

2
, and subtracting 1

2
times the second row from the first.

1 0 3 −1 −2 −2 −11 −9
0 1 4 0 2 −1 −2 −6
0 0 0 −1 −3 −2 −20 −16
0 0 0 0 0 1 7 7

3



The next element along the diagonal is zero, so we cannot pivot around this element.
Instead, we can pivot around the third element in the 4th column. In your linear
algebra class, you may have given up at this point, since we now know that the
matrix is not invertible (though since it is not square we knew that to begin with),
but here, we know that A is not invertible, but we still need to find a basis within it
anyway. We pivot by multiplying row 3 by −1, and subtracting row 3 from row 1.

1 0 3 0 1 0 9 7
0 1 4 0 2 −1 −2 −6
0 0 0 1 3 2 20 16
0 0 0 0 0 1 7 7

Almost there. We have another zero in the last element of column 5, so we
choose to pivot around the last element of column 6, which means we need to add
row 4 to row 2, and subtract 2 times row 4 from row 3.

1 0 3 0 1 0 9 7
0 1 4 0 2 0 5 1
0 0 0 1 3 0 6 2
0 0 0 0 0 1 7 7

We finally have an identity in our matrix! This is the end of our Gaussian Elimina-
tion! The columns that form the identity matrix are called basic columns, and form

a basis. Since each variable corresponds to a column, the variables corresponding
to the basic columns are the basic variables. We can read out a basic solution by
setting all variables (remember that each column corresponds to a variable) not in
the basis to zero, and putting the corresponding element of b as the value of each
basic variable. Here, we have:

x0 =





















7
1
0
2
0
7
0





















We now want to find the nullspace of the matrix to find the other solutions to the
system (we have Ax0 = b, but A(x0 + xn) = b if Axn = b). We can find the
vectores of the nullspace by setting one of the non-basic variables to 1, and all of the
basic variables to the negative of the corresponding entry in the non-basic column.
This will be clearer when we list the nullspace vectors:

y0 =





















−3
−4
1
0
0
0
0





















y1 =





















−1
−2
0
−3
1
0
0





















y2 =





















−9
−5
0
−6
0
−7
1





















(1)

4



Intuitively, if we were to increase a non-basic variable, all of the basic variables
would need to change by exactly the negative of the basic variable’s change on their
equation to maintain equality. So, all solutions to Ax = b are: x0 + λ0y0 + λ1y1 +
λ2y2.

5


