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1 Introduction

Formulating a production problem as a linear program could lead to a recommen-
dation of producing 7.5 cars and 1.5 trucks. The customer that gets the front half
of a car and the back half of a truck is unlikely to be happy. To remedy this, it is
natural to add additional constraints to the linear program indicating that certain
variables must take only integer values. This is called an integer program (IP). So
how powerful are integer programs? It turns out that most NP hard optimization
problems can be naturally formulated as integer programs, including the knapsack
problem, satisfibility, graph bisection and traveling salesman problem.

Some problems, such as knapsack, can be translated into integer programs with
barely any work: max pT x subject to wT x ≤ C and x ∈ {0, 1}n. Many other
problems can be formulated as LPs with some effort. Here are some tricks typically
used when translating problems into integer programs.

1.1 Disjunction

Linear programs translating a conjunction into a linear program is easy, since all
constraints of a linear program must be satisfied. Many problems, such Boolean
satisfibility (SAT), contain disjunctions as well. Consider the constraint x1 ∨ ¬x2

is true. This can easily be translated into x1 + (1 − x2) ≥ 1 with xi ∈ {0, 1}.
What about disjunctions of expressions, such as |x| ≥ 10, which is equivalent to
x ≥ 10 ∨ x ≤ −10?

The solution here is to introduce a 0/1 slack variable s and rewrite the equations
as x+Ms ≥ 10 and x− (1− s)M ≤ −10, where M is a very large number. If s = 0,
the first equation is in its original form and the second is trivially satisfied regardless
of the value of x. If s = 1, the first equation is trivially satisfied and the second is
not. Therefore this models disjunction.

1.2 Relying on the force of gravity

Consider the shortest path problem. One natural formulation is as a min cost flow
of 1 unit from s to t where every edge has a flow of either zero or one. At first
glance this might seem to be insufficient since there could be cyclic flows in addition
to the path we’re looking for. If all edge weights are positive, any optimal solution
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to the LP must be acyclic and therefore this potential problem won’t come up with
the optimal solutions we care about.

To show that two problems are equivalent, you need to show that given an
optimal solution to one of the problems you can find a feasible solution to the
other problem (in polynomial time) that is no worse. If you can show this in both
directions, then solving one problem implies solving the other.

2 TU

Certain problems that can be formulated as integer programs, such as shortest path,
have polynomial-time algorithms even though we have seen that general integer
programming is NP hard. It turns out that there is a condition on the matrix of
the integer program that allows us to show that any extreme point is integral and
therefore the problem can be solved in polynomial time. This condition is total

unimodularity. A matrix is TU if and only if all sub matrices have determinant
zero, one or negative one.

There are many ways to show that a matrix is TU. One can of course prove
it directly from the definition, but that is usually quite hard. The slides give a
partition theorem which is often easier than using the definition directly but still
requires thought. The following condition gives a more or less thoughtless way that
can prove whether or not many matrices are TU.

If A is TU then it remains TU if A is modified by:

1. Deleting one or more rows/columns

2. Performing a pivot operation

3. Adding or removing duplicate rows/columns or rows/columns with only one
non-zero, which is -1 or 1.

4. Negating rows/columns

5. Permuting Rows or columns

6. Transposed

7. Inverted (assuming square and invertible)

Note that for all of these operations except the first two are if and only if con-
ditions. This implies that given a matrix one wishes to evaluate to see if it is TU,
one can repeatedly apply those conditions, simplifying the problem until the answer
is obvious. For example, consider the question of determining for what values of X

the following matrix is TU:

−1 −1 −1 0
0 1 0 1
1 1 1 0
1 X 1 0
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The last column has only one nonzero, so it is necessary and sufficient to prove
that the matrix with that row eliminated is TU. After that elimination, the second
row can be eliminated for the same reason. Then negating the first row yields:

1 1 1
1 1 1
1 X 1

The first and second rows are identical, so the first can be removed. The resulting
first and third columns are identical, so the third can be removed, leaving:

1 1
1 X

The determinant of this matrix can now be calculated directly as X − 1 (the
one-element submatrices are obviously ok iff x ∈ {−1, 0, 1}). Therefore if X ∈ {0, 1}
the original matrix is TU but if X = −1 the original matrix is not TU. Note that
because these conditions are if and only if, the last matrix is TU if and only if
the original matrix is TU. This sort of “backwards” reasoning would be incorrect if
irreversible steps (not if and only if) were used.
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