Chapter 1, Paragraph 4 – Lecture Notes

Bland's Anticycling Algorithm (Slide 9)

What does it mean to choose B(i) minimal? Suppose we we have a tableau

:	27	:	129	:	503	:
:	0	÷	0	÷	1	••••
÷	0	÷	0	÷	0	÷
÷	0	÷	1	÷	0	÷
÷	1	÷	0	÷	0	÷

What does B look like?

$$B = (503, 27, 129)$$

B(i) is minimal with i = 2, B(i) = 27Remember,

$$\lambda = \min\left\{\frac{x_{B(i)}}{-y_{B(i)}}|y_{B(i)} < 0\right\} = \min\left\{\frac{\bar{b}_i}{\bar{a}_i^t}|\bar{a_i}^t > 0\right\}$$

An observation : consider the tableau

÷	27	129	÷	t	503	q	:
:	0	0	÷	≤ 0	1	0	0
÷	0	0	÷	\oplus	0	1	0
÷	0	1	÷	≤ 0	0	0	0
÷	1	0	÷	≤ 0	0	0	0

If we choose variable q to leave the basis, with the right-hand-side equal to zeroes, it implies that the element in nonbasic column t in the row where q contains a 1 is positive and all other elements are ≤ 0 .

Assume there is a cycle among columns c_2 , c_4 , and q in our tableau:

	÷	c_2	÷	c_4	÷	q	•••
1	:	÷	÷	÷	÷	÷	0
2	÷	÷	÷	÷	÷	÷	1
3	÷	÷	÷	÷	÷	÷	0
4	÷	÷	÷	÷	÷	÷	0

Then we can remove all rows and columns not involved in the cycle while still maintaining a cycle:

	c_2	c_4	q	:
1	÷	÷	÷	0
3	÷	÷	÷	0
4	÷	÷	÷	0

Now assume some cycle of tableaus T_i :

Where q enters the basis after tableau ${\cal T}_1$, and q leaves the basis after tableau ${\cal T}_k$.

			p		q		
	\bar{c}^T		\ominus		0	:	
		:	≤ 0	:	÷	:	
T_k :		÷	≤ 0	÷	÷	:	
$(q \ leaves)$		÷	\oplus	÷	1	÷	r
		÷	≤ 0	÷	÷	:	

Due to Bland's Anticycling restrictions, we know that for these 2 stages in the cycle, the following 4 statements hold:

(1)
$$\forall i < q, \ c_i \ge 0$$

(2) $c_q < 0$
(3) $\bar{c}_p < 0, \ \bar{a}_r^p > 0$
(4) $\forall i \ne r, \ \bar{a}_i^p \le 0$

Given our cycle, and the Bland's rule restrictions, the following must hold:

We choose
$$y$$
 as: $y_j = \begin{cases} -\bar{a}_i^p & \text{if } \bar{B}(i) = j \\ 1 & \text{if } j = p \\ 0 & \text{if } j \neq p \end{cases}$
(a)
 $c^T y = \bar{c}_p \leq 0$

(b)

$$0 \le c^{T}y = \sum_{j=1}^{q} c_{j}y_{j}$$

= $\sum_{i=1}^{m} -\bar{a}_{i}^{p}c_{\bar{B}(i)} + c_{p}$
= $(\sum_{i=1, i \ne r}^{m} -\bar{a}_{i}^{p}c_{\bar{B}(i)}) - \bar{a}_{r}^{p}c_{\bar{B}(r)} + c_{p}$

 $c_p \geq 0$, from (1) and the fact that p < q $c_{\bar{B}(r)} = c_q < 0$ from (2) and $\bar{a}_r^p > 0$ from (3). Thus $-\bar{a}_r^p c_{\bar{B}(r)} > 0$ For $i \neq r, c_{\bar{B}(i)} \geq 0$ from (1) and $\bar{a}_i^p \leq 0$ from (4). Thus the entire sum is ≥ 0 and we have reached a contradiction between (a) and (b).

Further notes about Bland's rule:

(1) Bland's anticycling will not avoid getting into a degeneracy, but once at a degenerate corner is guaranteed to escape.

(2) In practice one finds the use of "mixed pivot rules" – If your objective function is not improving after some number iterations, use Bland's Anticycling rules until improvement is seen, otherwise use whatever pivot rule you prefer.