
Two-Phase Simplex Algorithm and Duality

CS 149 Staff

October 20, 2007

1 Finding Initial Basic Feasible Solution

So far we have assumed that we have one basic feasible solution and we want to
optimize its objective value. For many problems setting all the non-slack variables
to zero yields a feasible solution, but that does not work if the right-hand side
vector has negative components. The iterative improvement technique that worked
so well for optimizing the objective also works well to achieve feasibility. There
are two approaches, both of which work by relaxing the problem so that finding a
basic feasible solution is trivial, and then working to restore the original problem
while maintaining feasibility. The easier approach for humans is to repeatedly pick
one of the violated constraints, and making pivots until that constraint is no longer
violated (ignoring the other violated constraints). Another approach, which is useful
for the primal dual algorithm, is to add new slack variables that indicate how much
each constraint is violated, and then minimize the sum of these artificial variables.

For the first approach, the first step is to do Gaussian elimination to obtain a ba-
sic solution. (If the problem was in canonical form, the slack variables would already
be a basis and this step is trivial.) Note which variables in the initial basic solution
are negative. Temporarily ignore these variables and the corresponding constraints,
updating the constraints in the same manner as the objective row but not consider-
ing them when determining which variable should leave the basis. The parts of the
tableau that aren’t being ignored are a feasible basis for a less constrained problem.
The algorithm proceeds by selecting one of the violated constraints and using it as
the objective function, attempting to minimize the contribution of the other vari-
ables to the left hand side so that the negative variable can be made positive. Note
that to guarantee termination one must keep with a particular violated constraints
until it is satisfied rather than switching from one constraint to another before the
first constraint is satisfied. Also, if the problem of satisfying a constraint is un-
bounded, let the objective constraint enter the basis. The slides give two examples
of using this method.

An alternate approach considers all of the violated constraints at once. In this
approach, start with some (not necessarily basic) solution and negate every row
that has a negative right hand side. This fixes the negative right hand side problem,
but eliminates any basis we started with. Introduce an artificial variable for each
row indicating how much that constraint is violated and add that variable to the
left hand side. These artificial variables form the initial basis. For example consider

1



finding a solution to −x1−x2−x3 = −2 and 2x1 +x2 +3x3−2x4 = 6. The resulting
tableau is:

a1 a2 x1 x2 x3 x4

1 0 1 1 1 0 2
0 1 2 1 3 −2 6

Note that a point is a feasible solution to the original problem if and only if
all the artificial variables are zero. Therefore, replace the original objective with
minimizing the sum of the artificial variables.

a1 a2 x1 x2 x3 x4

1 1 0 0 0 0 0

1 0 1 1 1 0 2
0 1 2 1 3 −2 6

The reduced costs over the basic variables must be zero, so subtract all of the
rows from the new objective:

a1 a2 x1 x2 x3 x4

0 0 −3 −2 −4 2 −8
1 0 1 1 1 0 2
0 1 2 1 3 −2 6

Run the simplex algorithm on this modified problem. For the running example
the result is:

a1 a2 x1 x2 x3 x4

4 0 1 2 0 2 0

1 0 1 1 1 0 2

−3 1 -1 -2 0 -2 0

If the optimal objective is positive, the original problem is infeasible. If the
optimal objective is zero (as in this case), we have a feasible solution to the original
problem. Unfortunately artificial variables might be in the final basis but degen-
erately equal to zero, so summarily removing the extra variables would leave us
without a basis. For example, the example final tableau has objective value zero
but a2 is in the basis. To fix this make arbitrary pivots in the offending row (boxed
in the above example). Pivoting around a negative entry is not a problem because
the corresponding right-hand side is zero.

Finally, eliminate the artificial columns from the tableau, replace the artificial
objective with the real objective, do row operations to restore zeros over the basic
variables, and proceed with the second phase of the simplex algorithm.

2 Runtime

We now have an algorithm that can solve any linear program. The worst-case run
time, however, is bounded by the number of bases, which is not polynomial. In the

2



1980s two algorithms that solve linear programs in polynomial time were discovered:
the ellipsoid method and the interior point method.1 One of the great mysteries
in combinatorial optimization in the later half of the 20th century was why the
simplex algorithm works so well in practice despite its poor worst-case performance.
Recently a few studies have shed some light on this issue. One can show that for some
models of random linear programs the simplex algorithm terminates, on average,
in polynomial time. Apparently from the perspective of the simplex algorithm
real-world instances have more in common with random instances then worst-case
ones2. A recent paper gives a randomized algorithm that is inspired by but rather
different from the simplex algorithm that has polynomial expected runtime. See
http://theory.csail.mit.edu/∼kelner/PDFs/KelnerSpielmanSimplex.pdf for details.

3 Duality

Duality concerns the generation of lower bounds on solutions to a linear program-
ming (traditionally the primal is a minimization problem and the dual is a maximiza-
tion problem). Suppose a linear program in canonical form has objective function
minimize 2x + 3y and one of the constraints is 2x + 3y ≥ 7. Clearly in this case 7
is a lower bound on the objective value. Now suppose the constraint is changed to
2x+y ≥ 7. Since y ≥ 0, this constraint is strictly stronger, so the same lower bound
should hold. To show this, add the valid inequality 2y ≥ 0 to 2x + y ≥ 7 yielding
2x+3y ≥ 7. As a final example, consider a problem with the same objective function
and constraints 2x+ y ≥ 7 and x+2.5y ≥ 5. Considering the first constraints alone
yields a lower bounds of seven as before. We can multiply the second constraint by
6/5 yielding a lower bound of 6. If one instead adds half the first inequality to the
second, one obtains 2x + 3y ≥ 8.5, better than either of the other bounds.

One natural question is what are the best bounds obtainable from this technique.
To answer this question a little formality is required. Consider a canonical form
linear program minimize cT x subject to Ax ≥ b and x ≥ 0. What we did was find
a linear combination of the constraints Ax ≥ b such that each of the coefficients
in front of variables xi is at most ci. Let π ≥ 0 be the weights of each constraint.
It turns out that taking a linear combination of the constraints is equivalent to
pre-multiplying A and b by πT , so for any feasible point x we have πT Ax ≥ πT b.
Suppose π satisfies πT A ≤ cT . Then πT b ≤ πT Ax ≤ cT x. This is called weak
duality.

Suppose we wish to find the best possible lower bound of this sort. This problem
can be formulated as a linear program, maximize πT b subject to π ≥ 0 and πT A ≤

1The ellipsoid algorithm actually works on a more general class of problems: minimization of
a linear function over a convex set, as long as there is a polynomial time algorithm (called a
separation oracle) that takes a point as input and if the point is not in the set, produces a hyper
plane separating that point from the set. This can even be extended to minimization of the convex
function over a convex set. The interior point method is also useful for nonlinear programs.

2In contrast, simple-minded quicksort with the pivot always being the first element of the input
exhibits worst-case behavior with a very realistic input: the input list being already sorted. Whether
worst or average case are more representative of real-world instances depends on the problem.

3



cT . This is called the dual of the original problem. It turns out that the dual of
the dual is the original, primal problem. To show this, rewrite the dual problem in
canonical form as minimize −bT π subject to π ≥ 0 and −AT π ≥ −c. Taking the
dual of this yields maximize −cT y subject to y ≥ 0 and −yT AT ≤ −bT . Renaming
x y and rewriting yields the primal problem.

If the primal is in standard form, the constraints are equalities instead of in-
equalities, so multiplying by a negative number is perfectly acceptable. Therefore,
the dual of a standard form has no restriction on whether or not π is non-negative.
The slides show how to take the dual of a general linear program (not necessarily
in canonical or standard form).

Now that we know how to systematically find the best possible lower bound
using this technique, a natural question is how close to the optimal objective of the
primal the lower bounds can get. It turns out that dual and the primal have the
same objective value (strong duality)! To prove this, recall that c̄T = cT − cT

B
A−1

B
A

and at optimality c̄T ≥ 0. This implies (cT

B
A−1

B
)A ≤ cT , so πT = cT

B
A−1

B
is dual

feasible. The corresponding dual objective value is πT b = cT

B
A−1

B
b = cT

B
x0

B
= cT x0.

Not only are the objective values of the primal and the dual equal, but a solution
to the primal yields an immediate solution to the dual. Since the dual of the dual
is the primal, a solution to the dual yields an immediate solution to the primal as
well. This is the idea behind the dual simplex algorithm.

For x and π that are optimal solutions to the primal and dual respectively,
πT b = cT x so the inequalities πT b ≤ πT Ax ≤ cT x in the proof of weak duality must
holds with equality, so πT (Ax − b) = 0 and (cT − πT A)x = 0. These are called the
complementary slackness conditions. Note that the four vectors π, x, Ax − b and
cT − πT A have non-negative components, so the dot products can only be zero if
for every component i πi(Ax − b)i = 0 and (cT − πT A)ixi = 0.

4


