
CS149 Introduction to Combinatorial Optimization Homework 10

Problem 1

There are 5 girls in a long row in math class.1 Each girl has a favourite chocolate bar, colour, pet,
hobby, and would like to go on a certain holiday. All the girls like different things. Your task is to
use the following clues to determine who owns the crocodile.

• Hannah likes the wispa bite

• The person with the hamster likes swimming

• Jo eats dairy milk

• Jessica is on the left of Georgina

• Lucy is the first on the left

• The first person on the right likes swimming

• The person who eats Milky Bars owns a horse

• The person in the middle eats Dairy Milk

• Jessica likes green

• The person on the left of the middle wants to go to Tobago

• The person who wants to go to the Maldives likes lilac

• The person who likes Wispa Bites sits next to the person who wants to go to Florida

• The person who likes pink wants to go to Florida

• the person who sits first on the left likes lilac

• The girl that likes blue owns a puppy

• The person who likes skiing sits next to the person who has a hamster

• The girl on the right of the girl who likes tennis likes horse riding

• The girl next to the girl who likes Milky bar likes Boost

• The girl who likes purple wants to got to Canada

• The girl who likes Crunchies owns a rabbit

• The girl who likes skiing sits next to the girl who plays ten-pin bowling

• Jessica wants to go to Australia

Assume All Diff constraint is present.

1This puzzle was created by pupils from Wadebridge School in Cornwall.
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Problem 2

Consider the set of variables x1, x2, . . . , xn. Some variables have already taken a value. That is,
there is a set I ⊆ {1, 2, . . . , n} such that xi = ci for all i ∈ I (the cis are known). Show that we can
decide in polynomial time whther there exists an assignment of the values in {0, 1, . . . , n5} to the
rest of the xis such that for all i = 1, 2, . . . , n − 1 we have xi+1 ≥ x2

i
− 2xi + 3i2 − 5i.

For extra credit, solve the same problem, but with a slightly different constraint replacing the
old ones: xi+1 ≥ x2

i
− 2xi−1 + 3i2 − 5i for 2 ≤ i ≤ n− 1. The sole difference is replacing − 2xi with

− 2xi−1 and updating the range of i to avoid referencing the non-existant x0.

Problem 3

W W W D O T

− F O O F E R

D O T G O V

Find an assignment of digits to letters (each letter gets a different number) to make the equation
work. Is your solution unique?


