Problem 1

We are given the following linear program:

 $-x_1$ $-4x_2$ $-3x_3$ $-3x_4$ max $+x_4 \leq 1$ s.t. $-x_1$ $-x_2$ $-x_4 \leq 2$ x_1 $-x_2$ $-x_3$ $-x_4 \leq -1$ $+x_{2}$ x_1 $-x_1$ $+x_{2}$ $+x_{3}$ $+x_4 \leq -2$ $x_1, x_2, x_3, x_4 \ge 0$

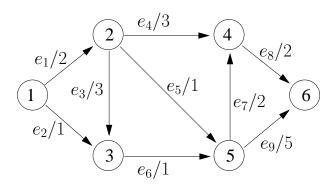
Add slack variables (s_1, s_2, s_3, s_4) to convert the problem to standard form, and solve it using the dual simplex algorithm.

Problem 2

Use the dual simplex algorithm to solve the following linear problem:

Problem 3

We will solve the shortest-path problem using the primal-dual algorithm. Consider the following directed graph that has n = 6 nodes and m = 9 edges.



CS149 Introduction to Combinatorial Optimization

We can model the shortest-path problem from node 1 to node 6, as a linear program as follows. Let $A \in \mathbb{R}^{n \times m}$ be the matrix where rows correspond to nodes and columns correspond to edges, and whose entry a_{ij} equals

$$a_{ij} = \begin{cases} 1, & \text{if edge } e_j \text{ begins at node } i, \\ -1, & \text{if edge } e_j \text{ ends at node } i, \\ 0, & \text{otherwise.} \end{cases}$$

Let \hat{A} be the $(n-1) \times m$ matrix that equals A with the last row truncated. The vector $d \in \mathbb{R}_+^m$ contains the distances of the edges (in the picture, the label of each edge is e_j/d_j). A path p in the graph is given by a vector $x \in \mathbb{R}^m$, where $x_j = 1$ if $e_j \in p$, and $x_j = 0$ otherwise. Then the solution to the shortest-path problem from node 1 to node 6 is given by the solution of the following linear problem:

min
$$d^T x$$

s.t. $\hat{A}x = (1, 0, 0, ..., 0)^T$
 $x > 0.$

- a) Give an explanation why the above problem solves the shortest-path problem. You don't have to give a proof, and you don't have to argue why the solution is going to be integral (unless you want to).
- b) Solve the linear problem by applying the primal-dual algorithm.