Problem 1

a) Show how the LP

$$\begin{array}{ll} \min & \mathbf{c}^T x \\ \text{s.t.} & \mathbf{A} \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$$

can be written as

$$\begin{array}{ll} \min \quad \mathbf{c'}^T x' \\ \text{s.t.} \quad \mathbf{A'} \mathbf{x'} \leq \mathbf{b'} \\ \mathbf{x'} \geq \mathbf{0}. \end{array}$$

for the matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 77 & 41 & -3 & 27 & 4 \\ 8 & 2 & 9 & -8 & 29 & 9 \\ 23 & 9 & 98 & 9 & 3 & 8 \\ 8 & 6 & 39 & 3 & 1 & 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 14 \\ 18 \\ 19 \\ 2 \end{bmatrix}.$$

b) Show how the LP

.

$$\begin{array}{ll} \min & \mathbf{c}^T x \\ \text{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ & x_1, x_2, x_4, x_5 \geq 0 \end{array}$$

can be written as

min
$$\mathbf{c'}^T x'$$

s.t. $\mathbf{A'x'} = \mathbf{b'}$
 $\mathbf{x'} \ge \mathbf{0}.$

for the matrices

•

$$\mathbf{A} = \begin{bmatrix} 3 & 7 & 3 & -3 & 27 & 4 \\ 42 & -12 & 9 & -9 & 29 & 9 \\ 3 & 8 & -8 & 18 & 8 & 4 \\ 0 & 2 & 19 & 3 & 8 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -41 \\ 8 \\ 91 \\ 12 \end{bmatrix}.$$

c) In general, how do you convert from

$$\begin{array}{ll} \min & \mathbf{c}^T x \\ \text{s.t.} & \mathbf{A} \mathbf{x} = \mathbf{b} \\ \mathbf{x} \in \mathbf{R} \end{array}$$

 to

$$\begin{array}{ll} \min & \mathbf{c'}^T x' \\ \text{s.t.} & \mathbf{A'} \mathbf{x'} = \mathbf{b'} \\ & \mathbf{x'} \geq \mathbf{0}. \end{array}$$

Problem 2

Pigfart Incorporated produces fertilizers that contain nitrate and phosphate in different relative amounts. The amount of phosphate and nitrate in the fertilizer determines the revenue from selling a ton of the fertilizer. There are three different fertilizers that can be produced:

Name	Nitrate	Phosphate	Revenue per ton sold
Pigfart's Classic (C)	2%	3%	\$30,000
Pigfart's Special (S)	4%	2%	\$30,000
Pigfart's Best (B)	4%	4%	\$45,000

The company has a stock of 8 tons nitrate and 6 tons of phosphate that can be used for production.

- a) Formulate the problem of maximizing revenue mathematically.
- b) Can you sketch the 3-dimensional feasible region graphically?
- c) Does your illustration of the problem help to determine how much of each fertilizer should be produced to maximize the revenue?

Problem 3

In this problem we will familiarize ourselves with the idea of convexity.

Definition of convexity:

A set $K \subseteq \mathbb{R}^n$ is called convex iff for all $a, b \in K : \kappa(a, b) \subseteq K$ where $a, b \in \mathbb{R}^n$ and we define $\kappa(a_1, \ldots, a_m)$ as the set of all convex combinations of a_1, \ldots, a_m .

Given $\sum_{i} \alpha_{i} = 1$ and $\{a_{1}, \ldots, a_{m}\}$ with $\subseteq \mathbb{R}^{n}, \sum_{i} \alpha_{i} a_{i}$ is a convex combination iff $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}_{>0}$.

a) You are given a point $y \in \mathbb{R}^n$ $[y = (y_1, \dots, y_n)]$. Show that the set $\{x : x_i \ge y_i, i = 1, 2, \dots, n\}$ is convex.

CS149 Introduction to Combinatorial Optimization

Homework 2

b) You are given a point $y \in \mathbb{R}^n$ and a real $\epsilon > 0$. Show that the set $\{x : |x_i - y_i| < \epsilon, i = 1, 2, ..., n\}$ is convex.

Problem 4

You are given the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 2 & -12 & -9 & 8 & -22 \\ 4 & -3 & 22 & -12 & -6 & 10 & -20 \\ 6 & 15 & -6 & -28 & -27 & 12 & -50 \\ 4 & 0 & 16 & -24 & -17 & 8 & -26 \end{bmatrix},$$

and the vector

$$\mathbf{b} = \begin{bmatrix} -20\\ -55\\ 6\\ -81 \end{bmatrix}$$

You want to solve the system Ax = b.

a) Perform Gaussian elimination. You must end up with a system of the form

Γ1	0	•	0	0	•			$\left\lceil \cdot \right\rceil$	
0	1	•	0	0	•		$\mathbf{x} =$.	
0	0	0	1	0	•			$\left \cdot \right $	•
0	0	0	0	1	•	•		Ŀ	

- b) Provide all the solutions to the system Ax = b.
- c) You are now given a cost vector $\mathbf{c}^T = \begin{bmatrix} 2 & -3 & 17 & -1 & 3 & 13 & -10 \end{bmatrix}$. What is the cost of every solution that you have computed in part (b)? Note that the cost can be parameterized in x_3, x_6 and x_7 .
- d) Find the optimal solution to the linear program

$$\begin{array}{ll} \min & \mathbf{c}^T x \\ \text{s.t.} & \mathbf{A} \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$$